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A. Review of literature used in meta-analysis 

 

There are 24 total studies included in this meta-analysis. The studies use different 

methods to examine the lead-crime relationship. Longitudinal studies, which track the 

same people over time, are common. Fergusson, Boden and Horwood (2008) use a 

longitudinal sample and find a positive association between dentine lead levels at 6-9 

years of age and later offending while including race and family socioeconomic status 

covariates. However, the effect was smaller once variation in education grades was 

added. They reasoned that the effect of lead was in reducing education outcomes, leading 

to more crime. Overall, they find that lead only explains 1% of the variation in crime. 

Nkomo et al. (2017) used a longitudinal sample in South Africa and found a positive 

association between blood lead levels at age 13 and violent crime in later life. Beckley et 

al. (2018) find only a small positive effect of childhood lead levels and both violent and 

non-violent crime in their longitudinal sample of New Zealand residents. They conclude 

other factors are much more important for determining crime rates. Finally, Sampson and 

Winter (2018) follow a longitudinal sample in Chicago and find school age lead levels are 

not associated with an increase in arrests in later life. Overall, longitudinal studies show 

a mixed picture, both on whether there is an effect and whether it is a strong one. 

A different strand of research looks at the correlation of lead levels and crime across time 

and areas, rather than at an individual level. Three studies look at time series of lagged 

lead levels and crime for the US. Nevin (2000) finds a positive effect, but McCall and Land 

(2004) find no effect on the age cohorts most affected in youth by the increase in leaded 

gasoline. They reason that increased lead levels at one time should only affect the crime 

rates of that cohort, not earlier cohorts, and so only look at crime rates for those certain 

age ranges. Lauritsen, Rezey, and Heimer (2016) look at two different data series of 

crime: the National Crime Victimization Survey (NCVS) and the Uniform Crime Reports 

(UCR). They find that lead is positively correlated with violent crime in the UCR but not 

the NCVS, which they consider a better measure of violent crime. However, they consider 

both data sources equally valid for property crime. Stretesky and Lynch (2004) find a 

strong effect when looking across US countries for both property and violent crime using 

the UCR. Mielke and Zahran (2012) find a strong effect across six US cities, Lersch and 

Hart (2014) find the same looking at Florida census tracts. Both Barrett (2017) and 
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Manduca and Sampson (2019) find a strong positive relationship in census tracts in 

Chicago using different methods. Looking outside the US, Taylor et al. (2018) find positive 

results for violent crime in Australia, and across six suburbs in New South Wales. Nevin 

(2007) estimates the relationship for many OECD countries and finds pre-school blood 

levels are strongly associated with a whole range of violent and non-violent crime. On the 

whole, studies which look at geographic areas as the unit of interest tend to find the 

strongest positive associations between lead and crime.  

The final strand of the literature are those studies that attempt to identify a casual effect 

while accounting for endogeneity from unobserved variables correlated with both crime 

and lead. These could bias the estimate of the effect of lead on crime. Lead exposure is 

correlated with poverty (Baghurst e al. 1999) and race (Sampson and Winter, 2016) and 

likely with other, unobservable, variables. We cannot rule out that these variables may 

cause individuals to commit more crime and be more exposed to lead, rather than lead 

being the cause. Even panel data designs with controls may not account for this 

endogeneity. The endogeneity threat has led to some, more recent, studies using quasi-

experimental methods. Needleman (2002) carried out a “case control” study where 

young offenders were matched to a “control” group chosen for similar observable 

characteristics. The offender group was found to have higher bone lead levels. Although 

this this is an improvement beyond looking at correlation alone, the likelihood of 

unobservable group differences means that the problem of endogeneity was not 

adequately resolved.  

Reyes (2007) is the first study to use quasi-experimental methods to derive a causal 

estimate. She uses the different grades and concentration of lead in gasoline in US states 

as an instrumental variable for lead levels. She finds an effect of lead on violent crime but 

not property crime. In a later paper (2015) she uses a similar identification strategy with 

individual-level data. Here she finds a positive effect on both property and violent crime. 

Feigenbaum and Muller (2016) also use an instrumental variable strategy. They 

instrument for the presence of lead water pipes in US cities using the distance to the 

nearest lead refinery in 1899, a period in which thousands of US cities built their water 

supplies. They find a positive causal effect on homicides in 1921-1936. Aizer and Currie 

(2018) use nearby traffic volume interacted with year of birth as an instrument for lead 

and include sibling fixed effects. They find a positive relationship between lead and 
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incarceration. Curci and Masera (2018) also find a positive association when they look 

across 300 US cities. Most of the estimates from this paper do not fall under the 

“addressing endogeneity” category, but in one chart of estimates they use soil quality as 

an instrument for lead. Grönqvist et al. (2019) use a sample of 800,000 Swedish children 

grouped by neighbourhoods and cohorts. They instrument for blood lead levels by the 

lead measured in moss in the areas. The estimates are mixed but tend to show a small 

positive effect on crime. Finally, Billings and Schnepel (2018) match a treatment group of 

children who had blood lead levels above a 10μg/dL threshold in two tests, with a control 

group of children who were above the threshold in the first test and just below in the 

second test, thus failing to qualify for treatment. This, close to randomised control trial, 

study finds a positive effect of lead on crime, with a stronger effect on property crime 

than violent crime. Overall, the few studies that use quasi-experimental methods all find 

a positive effect on crime, but they tend to find a smaller effect than the studies that look 

at correlations across geographic areas.  

 

B. Converting to common estimates 

  

To conduct a meta-analysis all estimates must be converted to a common metric. We 

use both elasticities and partial correlation coefficients (PCCs). We calculate the PCC as 

shown in equation (I): 

(I) 𝑃𝐶𝐶𝑖𝑗 =
𝑡𝑖𝑗

√𝑡𝑖𝑗+𝑑𝑓𝑖𝑗
2

 

Where 𝑡𝑖𝑗  is the t-ratio for estimate i of study j, and 𝑑𝑓𝑖𝑗  is the degrees of freedom. The 

standard error of each PCC is calculated according to equation (II): 

(II)  𝑆𝐸𝑖𝑗 =
𝑃𝐶𝐶𝑖𝑗

𝑡𝑖𝑗
 

Some papers reported odds ratios rather than correlation coefficients. Following 

Polanin and Snilstveit (2016), we converted these to PCCs. 
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(III)  𝑃𝐶𝐶𝑖𝑗 =  
𝑙𝑛(𝑂𝑅𝑖𝑗)×(

√3

𝜋
)

√(ln(𝑂𝑅𝑖𝑗)×(
√3

𝜋
))

2

+ 𝑎𝑖𝑗 

 

Where 𝑂𝑅𝑖𝑗  is the odds ratio i for study j and 𝑎𝑖𝑗 =
(𝑛𝑖𝑗1+𝑛𝑖𝑗2)

2

𝑛𝑖𝑗1𝑛𝑖𝑗2
. Here 𝑎𝑖𝑗 is a correction 

factor which depends on the sample size in the control and treatment groups (𝑛𝑖𝑗1 and 

𝑛𝑖𝑗2). If the sample sizes are unknown, or there are no treatment and control groups, we 

follow Borenstein et al. (2009) and set them to be equal, which gives 𝑎 = 4.  

In a similar way we calculate standard error equivalents for odds ratio estimates. 

Following the Cochrane Handbook (Higgins and Green, 2011), first we convert the 95% 

confidence intervals to odds ratio standard errors (ORSE). 

(IV) 𝑂𝑅𝑆𝐸𝑖𝑗 =  
(ln(𝐶𝐼̅̅ ̅)− ln(𝐶𝐼))

3.92
 

Where 𝐶𝐼̅̅ ̅ is the upper confidence interval limit and 𝐶𝐼 is the lower confidence interval 

limit. I then convert this into partial correlation coefficient standard errors. 

(V) 𝑆𝐸𝑖𝑗 =
√

(𝑎2×𝑂𝑅𝑆𝐸𝑖𝑗
2 ×(

3

𝜋2)

((log(𝑂𝑅𝑖𝑗)×(
√3

𝜋
))

2

+ 𝑎)

3 

Only one study (Billings and Schnepel, 2018) has estimates which are similar to 

randomised control trial estimates, with a mean difference shown between control and 

treatment groups. These can also be converted to PCCs. For these we follow Borenstein 

et al. (2009) and first compute the within-groups standard deviation 𝑆𝐷𝑖𝑗for estimate i 

of study j, as shown in (VI). 

(VI) 𝑆𝐷𝑖𝑗 = √
(𝑛𝑖𝑗1−1)×𝑆𝑖𝑗1

2 +(𝑛𝑖𝑗2−1)×𝑆𝑖𝑗2
2

𝑛𝑖𝑗1+𝑛𝑖𝑗2−2 
 

Here, 𝑛𝑖𝑗1 is the sample size for the control group for i of study j, 𝑆𝑖𝑗1 is the standard 

deviation for the control group, while 𝑛𝑖𝑗2 and 𝑆𝑖𝑗2 are the same from the treatment 

group. 
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We use this to calculate Cohen’s D: 

(VII) 𝐷𝑖𝑗  =  
�̅�𝑖𝑗1− �̅�𝑖𝑗2

𝑆𝐷𝑖𝑗
 

Where �̅�𝑖𝑗1 is the sample mean for the control group and �̅�𝑖𝑗2 for the treatment group. 

Finally, we convert Cohen’s D to a PCC by equation (VIII). 

(VIII) 𝑃𝐶𝐶𝑖𝑗 =
𝐷𝑖𝑗

√𝐷𝑖𝑗
2 +𝑎𝑖𝑗

 

Here 𝑎𝑖𝑗 is the same as that for equation (III) except we have the sample sizes for each 

group so we do not set it to equal 4. The variance for Cohen’s D is calculated as in (IX). 

(IX) 𝐷𝑉𝑎𝑟𝑖𝑗 =  
𝑛𝑖𝑗1+𝑛𝑖𝑗2

𝑛𝑖𝑗1×𝑛𝑖𝑗2
+  

𝐷𝑖𝑗
2

2(𝑛𝑖𝑗1+𝑛𝑖𝑗2)
 

This is then used to calculate the standard error of the PCC. 

(X) 𝑆𝐸𝑖𝑗 = √
𝑎𝑖𝑗

2 ×𝐷𝑉𝑎𝑟𝑖𝑗

(𝐷𝑖𝑗
2 +𝑎𝑖𝑗)

3  

One further study only uses simple correlations (Lauritsen et al., 2016). The standard 

errors for these must be approximated. We use the approximation of one divided by n-3 

for the correlation standard errors, as n is the same for all estimates, the standard 

errors are the same for all these estimates. 
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C. Common effects and random effects meta-analysis  

C.1 Common and Random Effects Weighted Averages 

This section explains how common and random effects meta-analysis estimates are 

calculated.  

Before calculating fixed or random effects meta-averages, first we convert all PCCs to 

normalised estimates with equation (XI), so that correct confidence intervals can be 

calculated. 

(XI) 𝑍𝑖𝑗 = 0.5 𝑙𝑛 (
1+𝑃𝐶𝐶𝑖𝑗

1−𝑃𝐶𝐶𝑖𝑗
)  

Where 𝑍𝑖𝑗  is the normalised effect size of a PCC. The process is that first PCCs are 

converted to normalised estimates, we estimate using either common effects or random 

effects, then the estimates are converted back to a PCC with equation (XII). 

(XII) 𝑃𝐶𝐶 =
𝑒2𝑧−1

𝑒2𝑧+1
  

Where in this case the PCC is the meta-analysis estimate as a correlation coefficient, and 

Z is the estimate obtained from the normalised PCCs. 

To calculate the common effects averages we weight each estimate by the inverse of the 

variance, and then divide the sum of these weighted estimates by the sum of the weights 

as shown in following two equations: 

(XIII) 𝑊𝑖𝑗 =
1

𝑉𝑖𝑗
 

(XIV) 𝐹𝐸 =
∑ 𝑊𝑖𝑗𝑍𝑖𝑗

𝑁
𝑖=1

∑ 𝑊𝑖𝑗
𝑁
𝑖=1

         

Where 𝑉𝑖𝑗 is the variance of estimate 𝑖 of study 𝑗 , 𝐹𝐸 is the fixed effects average, and 𝑍𝑖𝑗  

is normalised PCC. This average is converted back into a PCC by equation (XII). Along 

with the averages I calculate 95% confidence intervals, first by obtaining the standard 

errors of 𝐹𝐸. 
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(XV) 𝑆𝐸𝐹𝐸 = √
1

∑ 𝑊𝑖𝑗
𝑘
𝑖=1

 

Then obtaining lower and upper limits in the normal fashion. The fixed effect averages 

and standard error can be used to calculate Z-scores for hypothesis testing as normal. 

Random effects meta-averages are estimated in the same way as fixed effects, except we 

replace 𝑉𝑖𝑗 in equation (XIII) with 𝑉𝑖𝑗
∗ . Where 𝑉𝑖𝑗

∗ =  𝑉𝑖𝑗 + 𝑇2, and 𝑇2 is an estimate of the 

between-study variation. There are different methods of estimating 𝑇2, we use the 

DerSimonian-Laird (1986) method.  

C.2 Estimating Heterogeneity  

We use three measures of heterogeneity in our meta-analysis 𝐻2, 𝐼2, and 𝜏2. Each 

attempts to quantify the heterogeneity in study effect sizes. Estimating these is 

inference on the dispersion of 𝜃𝑗 , as outlined in the main text.  

These methods all use Cochran’s Q statistic in their calculations. The Q statistic is a 

estimate of the variation in the true effect sizes 𝜃𝑗 , compared to the sampling variation. 

It is calculated as below: 

(XV) 𝑄 =  ∑ 𝑊𝑖𝑗𝑍𝑖𝑗
2𝑁

𝑖=1  −  
(∑ 𝑊𝑖𝑗𝑍𝑖𝑗

𝑁
𝑖=1 )

2

∑ 𝑊𝑖𝑗
𝑁
𝑖=1

         

If Q is large, it means that a relatively larger share of the variation in observed effect 

sizes is due to differences in each study’s true effect size 𝜃𝑗 , rather than due to sampling 

variation. Under the null hypothesis of no difference in 𝜃𝑗  the Q statistic will be Chi-

square distributed with N-1 degrees of freedom. 

Simply testing for completely homogeneous effects is extreme, given we assume effect 

size heterogeneity throughout the analysis (see section 4). Therefore we move on to 

testing how heterogeneous the effects are with the three statistics we use. 

𝜏2 is an estimate of variance of  𝜃𝑗 , the “true” effect size distribution. It is calculated as: 

(XVI) 𝜏2 =
𝑄−𝑑𝑓

𝐶
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Where df is the degrees of freedom and C, a variable that transforms the Q statistic back 

into the original units of analysis (either PCCs or elasticities in our case). It is calculated 

as: 

(XVII) 𝐶 =  ∑ 𝑊𝑖𝑗
𝑁
𝑖=1  −   

(∑ 𝑊𝑖𝑗
𝑁
𝑖=1 )

2

∑ 𝑊𝑖𝑗
𝑁
𝑖=1

         

The larger 𝜏2 is, the larger the estimated variance in “true” effect sizes between studies. 

𝐼2 attempts to quantify what proportion of the observed variance is due to sampling 

errors, against the proportion due to study effect size heterogeneity. It is a figure 

between 0% and 100%. Very high 𝐼2 means that most of the observed variation is due 

to effect size variation between studies. 𝐼2 is calculated as: 

(XVIII)  𝐼2 = (
𝑄−𝑑𝑓

𝑄
) × 100% 

Finally, 𝐻2 is: 

(XIX) 𝐻2 =
𝑄

𝑑𝑓
 

If 𝐻2 = 1 then there is no variation in study effect sizes. It has no upper bound, and the 

greater it is the larger the between-study heterogeneity.   

D. Publication bias adjustment  

We use seven methods to obtain an estimate of the average effect after adjusting for 

publication bias. This section describes those methods in more detail. 

All publication bias methods either test or assume that the observed sample 

distribution is a truncated version of the underling population distribution. We have no 

details about the missing values (i.e. this is not a censored distribution). Therefore, 

selection models using observations (such as in Heckman, 1976) are not possible.  

The publication bias methods rely on assumptions about the truncation process that 

generates the selection bias which causes the observed distribution to differ from the 

population distribution. The observed sample and the selection bias assumptions are 
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combined in some estimation procedure, and this produces an estimate which is 

adjusted for the publication bias, if it is found to be present. In some cases when tests 

reject publication bias there is no adjustment, and the estimate collapses into either the 

common or random effects estimate. 

Linear Methods 

The first four methods are all linear regressions based on the PET-PEESE method. The 

PET-PEESE is itself an extension of the Egger (1997) test. The Egger test is a simple 

regression of the effect size on the standard error. A t-test on the standard error 

coefficient is a test of publication bias where H0 = no publication bias, and H1 = there is 

publication bias.  

Stanley and Doucouliagos (2014) note the heteroskedasticity in the Egger test, as more 

precise effect sizes (assuming a shared effect size distribution and that estimates also 

have sampling error) will tend to be closer together. Therefore, they extend the Egger 

test by using weighted least squares, with the weights being the inverse of the standard 

errors themselves, which are an estimate of this heteroskedasticity. The coefficient on 

the precision (1/SE) is the Funnel Asymmetry Test (FAT). The intercept in this model 

becomes the Precision Effect Test (PET). The FAT is an estimate of the bias, the sign of 

which indicates the direction of the bias. The PET is an estimate of the average effect 

size when publication bias is zero, i.e., the effect size population mean.  

The coefficient on the FAT approximates the inverse Mills’ ratio. However, this is not a 

constant, it varies with the standard error. Therefore, Stanley and Doucouliagos (2014) 

propose using a Taylor expansion around the standard error to better approximate the 

inverse Mills’ ratio. In theory, any number of additional polynomials could be included 

in the regression, but sample size restrictions in meta-analysis, and the decreasing 

returns on including more polynomials, mean that few meta-analyses go beyond a cubic 

term. Stanley and Doucouliagos (2014) propose constraining the linear term on the 

standard error to be zero and using a squared term. This is the Precision Effect Estimate 

with Standard Error (PEESE) test. They find in simulations that this performs better 

than the FAT-PET when the “true” mean of the population of estimates is not equal to 

zero. This is the second method we use. 



10 
 

The third method is simply the FAT-PET but including study fixed effects. This is more 

efficient than the standard the FAT-PET, assuming the common effects model is not true 

for the population. This is estimated with restricted maximum likelihood, which adjusts 

the degrees of freedom downward for each study fixed effect, without which the 

variance of the error is biased downwards.  

The fourth method we use is the FAT-PET with an instrumental variable. There are 

other reasons beyond publication bias why the effect size might be correlated with the 

standard error. For example, regression discontinuity designs (although there are none 

in our sample) converge at a rate at least as slow as the cubed root of the sample size. 

Whereas OLS converges at a rate of the root of the sample size. A regression 

discontinuity with the same sample size will tend to have larger standard errors than 

the simple OLS regression. The effect size will also be different, perhaps because they 

estimate different estimands, or perhaps because the bias is larger in the OLS sample. 

Similarly, two stage least squares will tend to have larger errors even if it is estimating 

the same estimand as OLS. Therefore, the coefficient on the standard error may not be a 

good approximation of the inverse Mills’ ratio.  

An alternative strategy is to use the inverse of the square root of the sample size as an 

instrumental variable for the standard error. The sample size is correlated with the 

standard error. Assuming no relationship between sample size and the effect size 

beyond its relationship to the standard error (the exclusion restriction), then it will give 

a better estimate of publication bias and therefore a better PET estimate. 

Non-linear methods 

The weighted average of adequately powered estimates (WAAP) developed by Stanley, 

Doucouliagos, and Ioannidis (2016) estimates a common effects weighted average using 

only high-powered studies. Studies are discarded if they do not meet some power 

threshold given by: 

(D.1)    
�̂�𝑤

2.8
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Where �̂�𝑤 is some estimate of the average effect, and the 2.8 denominator comes from 

the sum of two t-distributed test standard deviations, 𝑡1−
𝛼

2
+ 𝑡(1−𝛽). Following 

convention, the critical value of the test of the null is set as 𝛼 = 0.05, and the power of 

the test is set as 80%, so that 𝛽 = 20%. This gives a sum of 1.96 + 0.84 = 2.8. Stanley, 

Doucouliagos, and Ioannidis (2016) suggest using the common effects estimate as the 

value �̂�𝑤. Given the very small common effects estimate in our sample this would only 

leave only one study, that of Grönqvist, Nilsson and Robling (2019). This would mean 

the WAAP collapses into the weighted average estimate in table 1. To be more generous 

to the Lead-Crime hypothesis, we instead use the larger random effects estimate as �̂�𝑤. 

The studies and number of estimates from each considered to be adequately powered 

under this method is given in table D.1. 

Table D.1 – Studies and estimates used in WAAP 

  

Study Estimates 

Aizer & Currie (2019) 6 

Beckley et al. (2018) 10 

Billings & Schnepel (2018) 3 

Curci & Masera (2018) 97 

Feigenbaum & Muller (2016) 43 

Fergusson et al. (2008) 6 

Grönqvist, Nilsson and Robling (2019) 54 

Lersch & Hart (2014) 2 

Manduca & Sampson (2019) 2 

Masters et al. (1998) 3 

Mielke & Zahran (2012) 1 

Nevin (2000) 1 

Nevin (2007) 26 

Nkomo et al. (2017) 10 

Reyes (2007) 65 

Reyes (2015) 13 

Stretesky & Lynch (2004) 20 
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Trim and Fill first ranks studies by the absolute value of their effect sizes, then estimates 

how many effect sizes are missing from either the positive or negative side of the 

distribution (the negative side in our case). Importantly, these studies are assumed to 

be not observed with probability one. This contrasts with other methods which 

estimate the publication probabilities over certain intervals (such as Andrews-Kasy). 

The trim-and-fill method then uses an iterative algorithm to obtain an average effect 

estimate.  

1. First obtain the random effects estimate from the full sample, use this to estimate 

the number of missing studies (they propose three different estimators for this).  

2. Using the estimate for number of missing studies on the negative side, an equal 

number of studies are “trimmed” from the sample on the positive side, starting 

with the largest and moving down.  

3. Now obtain another random effects estimate from the trimmed sample and use 

this to again estimate a number of missing studies. 

4. Continue until the random effects estimate of iteration j is equal to the estimate 

of iteration j – 1. 

5. Now add the “fill”, where imputed values are added to the negative side of the 

distribution, using the estimates obtained in the last iteration and the most 

positive values in the sample left after “trimming” (see section 5 in their paper). 

6. Finally, obtain a new random effects estimate using the full initial sample, plus 

the imputed “filled” values. 

This method adds 226 estimates to the full sample trim and fill, 82 to the elasticity 

sample, and 11 to the representative estimates sample.  

In the Andrews and Kasy (2019) method, they use a step function to estimate the 

probability of observing an effect over various intervals of the distribution. This 

contrasts with the trim and fill, where some observations are assumed missing with 

probability one, and the FAT-PET, which uses an approximation of the inverse Mills’ 

ratio to deal with the truncation.  

They observe, however, that the publication probabilities can only be identified up to 

scale. That is, we cannot know that absolute probability of publication over any one 
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interval. Therefore, we must estimate relative publication probabilities. We do this by 

setting one publication probability as the reference probability, and then identifying the 

others up to scale, i.e., relative to this one. In our case the reference probability is the 

probability of observing a positive effect size that is significant at the 5% level. This 

probability is set at some arbitrary value (one in our case) and the other probabilities 

estimated relative to this. If the estimated probabilities are less than one, then they are 

less likely to be observed than positive values significant at the 5% level, and vice versa. 

With relative probabilities estimated, the distribution is reweighted using the relative 

probabilities to reconstruct the true untruncated distribution. We can use this to get an 

estimate of the population mean, adjusting for the publication bias. We use the 

maximum likelihood approach and algorithm in Hedges (1992) as recommended by 

Andrews and Kasy (2019) to do this. In the case of only using representative estimates, 

we did not achieve convergence.  

The estimates publication probabilities over different z-score intervals are shown below 

for the full sample and the elasticity sample. 
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Figure D.1 – Estimated relative publication probabilities, partial 

correlations 

 

Figure D.2 – Estimated relative publication probabilities, elasticities 

 

E. Analysis using only representative estimates 

 

In most of our analysis we use all estimates. As a robustness check, here we use only 

one representative estimate from each paper. There was not always a clear 
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representative estimate from each study. Therefore, choosing the estimates involves 

some subjective judgement. We tried to choose results mentioned in the abstract or as 

the main result. In general, we chose representative estimates which were less specific 

(i.e., totals preferred to subsample male/female, white/black results etc.), and estimates 

obtained using more covariates for correlational results. 

In section 4.3 we test for publication bias using all estimates. In table E.1 we repeat the 

exercise using only the representative estimates. However, we cannot estimate the 

hierarchical model, or cluster errors as we only have one estimate per study. 

Furthermore the Andrews-Kasy method, using maximum likelihood, did not converge. 

 

Table E.1 – Effect beyond bias and publication bias estimates using representative 

estimates, partial correlations 

 FAT-PET 
FAT-

PEESE 
IV WAAP TF 

 
Full Sample, PCCs 
 

     

Effect Beyond Bias 

 

-0.001 

(0.002) 

0.007 

(0.004) 

-0.001 

(0.002) 

0.007 

(0.004) 

0.015 

(0.059) 

Publication bias 3.717 

(0.894) 

12.152 

(6.998) 

3.733 

(0.880) 

. . 

Groups 24 24 24 . . 

      

Notes. Estimates are PCCs presented with their standard errors in brackets. FAT-PET is Funnel Asymmetry test and 

Precision Effect Test (Stanley and Doucouliagos, 2014). FAT-PEESE is Funnel Asymmetry Test and Precision Effect 

Estimate with Standard Error. The multi-level FAT-PET is a mixed effects-multi-level model with a different slope 

coefficient for each study. IV is a FAT-PET regression with square root of sample size used as an instrumental variable 

for the precision using two stage least squares. WAAP (Stanley, Doucouliagos, & Ioannidis, 2017) is the Weighted 

Average of Adequately Powered Estimates, where studies below a certain estimated power are removed before 

calculating the effect. Trim and fill (Duval & Tweedie, 2000), removes outlier studies and then adds imputed studies 

before calculation an average effect. The Andrews-Kasy (Andrews & Kasy,2019) method is a step function selection 

model which reweights the observed sample with estimated publication probabilities. See Online appendix D for full 

explanation of each method.  
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F.  Bayesian Model Averaging (BMA) 

We carry out two forms of Bayesian model averaging: 1) we obtain an ensemble 

estimate of the effect beyond bias, using both linear and non-linear publication bias 

correction models, 2) we take model averages over all covariates used in the meta-

regressions. 

Table F.1 presents Bayesian model averages of publication bias correction models. We 

use the RoBMA R package of Bartoš et al. (2021).  

 

Table F.1 – Effect beyond bias, Bayesian model averages 

      

 Full Sample, 

PCCS 

Endogeneity 

Sample, PCCS 

Representative 

Estimates, PCCs 

Elasticities 

 

Elasticities, 

Endogeneity 

sample only 

 

Effect Beyond Bias 

 

-0.17  -0.09 0.09 0.03 

      

Observations 542 220 24 312 

 

211 

 

We also carry out Bayesian model averaging with all variables used in our meta-

regression analysis. We estimate a normal-gamma conjugate model with a uniform 

model prior and unit information g-prior. These are the same as in Bajzik et al. (2019), 

see there for more information. The results are given below in table F.2. 
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Table F.2 – Posterior results from Bayesian model averaging, PCC 

Variable Posterior 

Mean 

Posterior Standard 

Deviation 

Posterior Inclusion 

Probability 

Precision 0.35 0.03 1.00 

Control gender 0.04 0.03 0.71 

Control race 0.00 0.01 0.09 

Control income -0.04 0.03 0.70 

Control education 0.00 0.00 0.05 

Homicide -0.03 0.03 0.54 

Violent 0.00 0.02 0.14 

Non_Violent -0.01 0.03 0.34 

Area 0.24 0.03 1.00 

OLS 0.03 0.03 0.55 

ML 0.04 0.03 0.81 

Odds_Ratio -0.04 0.07 0.35 

Panel dummy -0.17 0.02 1.00 

Addressing 

Endogeneity 0.00 0.00 0.05 

North_America -0.41 0.03 1.00 

Europe 0.00 0.02 0.07 

Direct Lead Measure -0.39 0.04 1.00 

Publication Year 0.00 0.01 0.08 

Covariates -0.07 0.01 1.00 

Sample size 

 0.00 0.00 0.09 

FAT 3.40 NA 1.00 

    

Observations 542   

    

 

We evaluate the posterior means at the sample averages for each variable (excluding 

the FAT as normal). This gives a point estimate PCC of 0.09. 

We do the same for the elasticity sample in table F.3.  
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Table F.3 – Posterior results from Bayesian model averaging, elasticity 

Variable Posterior 

Mean 

Posterior Standard 

Deviation 

Posterior Inclusion 

Probability 

Precision 0.24 0.07 1.00 

Control gender -0.14 0.09 0.83 

Control race 0.00 0.00 0.05 

Control income 0.00 0.00 0.05 

Control education -0.01 0.09 0.24 

Homicide 0.00 0.01 0.05 

Violent 0.06 0.01 1.00 

Non_Violent 0.00 0.00 0.05 

Area 0.00 0.03 0.07 

OLS 0.00 0.02 0.10 

ML 0.00 0.02 0.08 

Panel dummy -0.22 0.09 0.98 

Addressing 

Endogeneity 

0.00 0.01 0.07 

North_America -0.01 0.04 0.18 

Direct Lead Measure -0.01 0.08 0.08 

Publication Year 0.06 0.04 0.77 

Covariates 0.00 0.01 0.06 

Sample size 

 

0.03 0.01 0.94 

FAT 1.66 NA NA 

    

Observations 312   

    

Again, we evaluate the posterior means at the sample averages for each variable 

(excluding the FAT as normal). This gives a point estimate elasticity of 0.07. 
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G. Alternative elasticity estimates  

Our full sample includes studies that we could not obtain elasticity estimates from. 

However, it is a larger and possibly more representative sample of the literature. In this 

section we therefore convert the PCC estimates from the full sample into plausible 

elasticities. The PCC and the elasticity are related, but not in a straightforward manner. 

This forces us to make some strong assumptions in the interests of welfare analysis.  

Given a PCC and the change in a given measure of crime for a given measure of lead, 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑
, 

then the relationship between the two is given in (7). 

(8) 𝑃𝐶𝐶 =  
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)

𝑠𝑑(𝐿𝑒𝑎�̃�− �̃�′𝛾1)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ −�̃�′𝛾2)
 

Where 𝑠𝑑(. ) means the standard deviation. 𝐿𝑒𝑎�̃� −  �̃�𝛾1 are the residuals from a 

regression of Lead on 𝒛, a vector of variables related to lead and crime, where both lead 

and 𝒛 have been standardised. Similarly, 𝐶𝑟𝑖𝑚𝑒̃ − �̃�𝛾2 are the residuals from a regression 

of Crime on 𝒛, where both have been standardised. If we wish to attach a causal 

interpretation to the elasticity, we can think of 𝒛, following Peters, Bühlmann, and 

Meinshausen (2016), as the minimum set of variables under which the distribution of 

Crime is invariant when conditioned on both 𝒛 and Lead.  

It can be seen that a PCC will always share the same sign as 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑
 but will be inflated or 

deflated according to the relative size of the standard deviations in (7). 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)
 is 

equivalent to a standardised coefficient. The intuition for the last ratio is as follows: the 

greater the variation in Lead that is not explained by 𝒛, the larger the PCC, because the 

overlapping variation between the independent effect of Lead and Crime is relatively 

greater. The PCC is also greater the larger the amount of variation in Crime explained by 

𝒛. This is because the share of unexplained variation in Crime becomes smaller, so the 

share of variation jointly explained by Lead and 𝒛 increases. As more of the variation in 

Crime is explained by both Lead and 𝒛, their PCCs will tend to 1 or -1. 

To evaluate an elasticity at the sample means we multiply both sides by 
𝐿𝑒𝑎𝑑

𝐶𝑟𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅

̅̅ ̅̅ ̅̅ ̅
, where the 

bar indicates the mean. We can then rearrange (7) to put it in terms of the elasticity η. 

(9) η =  
𝐿𝑒𝑎𝑑

𝐶𝑟𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅

̅̅ ̅̅ ̅̅ ̅ 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ −�̃�′𝛾2)

𝑠𝑑(𝐿𝑒𝑎�̃�− �̃�′𝛾1)
𝑃𝐶𝐶 
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We can see that the size of the PCC relative to the elasticity depends on three ratios. The 

first two, the relative means and standard deviations, depend on the measures of crime 

and lead. We use homicide and blood lead data from the US as an illustrative example to 

examine plausible elasticities, given the fall in both violent and non-violent crime was 

particularly pronounced there. The means, standard deviations, and sources are given in 

table IX. Given these, the relative size of the PCC to the elasticity depends upon the third 

ratio of residual standard deviations. This ratio could theoretically take any value 

between zero and infinity, and therefore so could the elasticity (assuming the PCC is 

positive). We therefore look at what are plausible values for this ratio and what is the 

range of the elasticity given these values. 

The maximum value the numerator 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2) can take is one, representing no 

common variation between 𝒛 and Crime. We hold it at one, to inflate the PCC as much as 

possible. The final element of the equation is 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1). This is the residual 

variation in Lead not explained by 𝒛. The lower this is, the more the PCC will be inflated, 

and therefore the greater the elasticity. The elasticity is convex in 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1), 

decreasing at a decreasing rate.  

Figure F.1 plots the relationship between the elasticity and 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1), given the 

estimated mean PCCs, the values in table IX, and holding 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2) constant at 

the maximum value of one. The elasticities drop sharply with an increase in the 

denominator 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2), with the elasticity for the addressing endogeneity 

sample approaching close to zero almost immediately. The elasticity for the full sample 

slopes down more gently but even so does not suggest a large elasticity except at 

extremely small values of 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2).  

We can now propose a range of plausible values for the elasticity. Given the uncertainties 

around the ratio of unexplained variations in (9), this is somewhat arbitrary, but we hope, 

given the discussion above, not unreasonably so. There is no compelling reason to 

suppose 𝒛 would explain more of the variation in Lead than in Crime. Nevertheless, if we 

take as a lower bound that 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1) is ten times as large as 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2) , 

and as a conservative upper bound that they are equal, then we can give a range of values 

based on our estimated PCCs. For the full sample PCC, this gives an elasticity of 0.32-0.03. 

For the addressing endogeneity sample PCC, the range is 0.03-0.00, to two decimal places. 
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The median blood lead level in children fell 88% from 1976-2009. The full sample 

elasticity estimates therefore would suggest the fall in lead has decreased homicide in the 

US by between 28% and 3%. The equivalent decrease for the addressing endogeneity 

sample is between 3% and 0%. The US homicide rate fell 54% from its peak in 1989 to 

2014. This would mean that lead accounts for between 52% and 6% of the decrease in 

homicide using the full sample elasticity, and 5%-0% using the addressing endogeneity 

elasticity. Our generous assumptions of the lower bound on the ratio of residual variation 

in (8) imply that lead may be the most important factor in the fall in homicide. Our upper 

bound on that same ratio implies lead accounts for very little of the fall in crime.  

Figure G.1 – Estimated Elasticity of on lead on crime 

 

Notes. Chart shows how η, the calculated elasticity of lead on crime, varies with changes in 𝑠𝑑(𝐿𝑒𝑎�̃� − �̃�′𝛾1), the 

standard deviation of the residual in a regression of a set of standardised variables �̃�, and the standardised measure 

of lead 𝐿𝑒𝑎�̃�.  

Table G.1 – Descriptive statistics of data used for elasticity estimation 

 

 

Variable 

 

Mean 

 

Standard Deviation 

   

η  

 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1) 
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Median blood lead level for children ages 1-5 in US 3.39 4.42 

US Homicide rate 6.98 1.81 

   

 

Sources. NHANES data for blood lead and FBI uniform crime reports for the homicide data. 
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