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Abstract 

Does lead pollution increase crime? We perform the first meta-analysis of the effect of 

lead on crime by pooling 529 estimates from 24 studies. We find evidence of publication 

bias across a range of tests. This publication bias means that the effect of lead is 

overstated in the literature. We perform over 1 million meta-regression specifications, 

controlling for this bias, and conditioning on observable between-study heterogeneity. 

When we restrict our analysis to only high-quality studies that address endogeneity the 

estimated mean effect size is close to zero. When we use the full sample, the mean effect 

size is a partial correlation coefficient of 0.11, over ten times larger than the high-quality 

sample. We calculate a plausible elasticity range of 0.22-0.02 for the full sample and 0.03-

0.00 for the high-quality sample. Back-of-envelope calculations suggest that the fall in 

lead over recent decades is responsible for between 36%-0% of the fall in homicide in the 

US. Our results suggest lead does not explain the majority of the large fall in crime 

observed in some countries, and additional explanations are needed.  
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1. Introduction 

Homicide rates spiked and then fell in a consistent pattern across many western 

countries in the 20th century (figure I). In the US alone the homicide rate has halved since 

the 1980s, when it was as high as the road fatality rate is today. In other countries the 

falls are not so great in magnitude, but still amount to many lives saved. If the causes of 

this fall were known, many more deaths and trauma could potentially be prevented.  

Is lead pollution responsible? Lead is a toxic metal linked to harmful health and 

behavioural outcomes (see section 2). Studies have pointed to falling lead levels in the 

environment as a cause of the falls in homicide, and as a factor in crime rates in general. 

The reduction in lead pollution is largely due to falling emissions from leaded gasoline 

(figure II), but also due to less lead pollution from water pipes, paint, food, and soil. 

However, the rise and fall pattern in figure I is by no means uniform. Further, Buonanno 

et al. (2011) show that while total crime has behaved similarly to homicide in the US, it 

has not in Europe (figure III). Alternative hypotheses for the observed fall in crime in 

some countries range from falling poverty levels (Rosenfeld and Fornango, 2007, and 

Messner, Raffalovich, and Mcmillan, 2001), to demographic transition, where an ageing 

population is less likely to be victimised by or engage in crime (Fox, 2005, chap. 9; 

Baumer, Rosenfeld, and Wolff, 2012), increased/better policing or incarceration (Levitt, 

1996, 1997, 2004; Marvell and Moody, 1996; and Corman and Mocan, 2000), to more 

controversial hypothesis such as legalized abortion reducing the number of children born 

into “adverse home environments” (Donohue and Levitt, 2001, 2019; Buonanno et al., 

2011). Tcherni-Buzzeo (2019) provides a recent summary of potential causes. 

Against this background, our paper conducts the first meta-analysis of the effect of lead 

on crime. We systematically review the literature and, using the procedural guidance 

from Havránek et al. (2020), construct a dataset of estimates converted to comparable 

effect sizes. We perform tests for publication bias and find that the effect of lead on crime 

is overstated in the literature due to this bias. Furthermore, we find substantial between-

study heterogeneity in our sample. We therefore use meta-regression to estimate an 

average effect size accounting for both publication bias and the observable between-

study heterogeneity.  
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We take into account model uncertainty in our meta-regression analysis by estimating 

over 1 million specifications, using every combination of our covariates on both the full 

sample and several subsamples. We then plot the distributions of the estimated average 

effect size of lead on crime. Our main finding is that there are substantial differences 

between the average effect size when we use the full sample, and when we use only the 

high-quality study designs that address endogeneity. The mean partial correlation 

coefficient in the full sample, evaluated at sample averages, is 0.11, while the equivalent 

for the high-quality sample is 0.01, almost zero. Similarly, the sample of studies that have 

crime in an area as the focus of analysis have a larger mean effect size compared to that 

of studies which focus on individual behaviour. Conversely, we do not find evidence of 

differences for the effect of lead on different types of crime when we use homicide, 

violent, and non-violent crime samples.  

Finally, we convert the estimated mean partial correlation coefficients to elasticities. Our 

calculations give a plausible elasticity range of 0.22-0.02 for the full sample mean effect 

and 0.03-0.00 for the high-quality sample that addresses endogeneity. We conduct back-

of-envelope calculations which imply the reduction in lead pollution may be responsible 

for between 36%-3% of the fall in homicide in the US when the full sample elasticity is 

used, but only between 5%-0% when the high-quality sample elasticity is used. Our 

findings suggest that, while there is a possibility that the effect of lead may be substantial, 

it is not responsible for the majority of the fall in crime. Therefore, other explanations 

require further investigation.  

 

2. Lead and Crime 

Lead has been part of the human environment for a long time. It was used in cosmetics, 

paint, and as coinage in ancient China (Schafer, 1956). Similar uses were recorded in 

ancient Egypt, India, and across the Bronze Age world (Needleman, 1992). The sweet 

taste of lead acetate meant that the Roman Empire and later medieval Europe used lead 

to sweeten wine, cider, and food (Lessler, 1988). The Romans had many other uses for 

lead, using it for cooking utensils, pottery, and water pipes (Hernberg, 2000). Indeed, 

Roman use of lead was prodigious, with estimates from Greenland artic ice putting the 

increase in atmospheric lead pollution at around 4000 metric tons a year at its peak 
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around 2000 years ago (Hong et al. 1994). This is equivalent to the UK’s lead pollution 

emissions in the mid-1980s, when leaded gasoline had not yet been phased out.  

Lead is a useful but toxic metal. At high levels of exposure even adults will experience lead 

poisoning. Acute lead poisoning is rare but can kill quickly. Chronic poisoning can still kill and 

is associated with abdominal pain, organ failure, tumours, and exhaustion, amongst other 

symptoms (WHO, 2010a). Although chronic lead poisoning in adults still happens, and 

appears to affect behaviour, it is primarily the long-term lead exposure of children that is 

thought to influence crime rates. 

Children are especially vulnerable to lead pollution. Children not only absorb more lead per 

unit body weight than adults, but, as the brain and nervous system are still developing, lead 

has more harmful long-term effects even at low levels (WHO, 2010b). Lead is chemically 

similar to calcium4. Calcium is important for cell growth, and synaptic functioning, as well as 

a myriad of other body processes (Sanders et al., 2010). Therefore, lead is particularly 

harmful to the developing brain and nervous system, and thus in the womb and early 

infancy are the worst time to be exposed to lead (WHO, 2010b).  

The causal chain of lead to crime starts with the biological changes it induces at this young 

age. The mechanism for these changes is laid out in Sanders et al. (2010), and there is an 

array of evidence for lead’s negative effects. These include impaired nerve conduction 

(Sindhu and Sutherling, 2015), damaged myelination in the nerve system (Brubaker et 

al., 2009), impeded brain development (Lanphear, 2015), and reduced brain matter 

(Cecil et al., 2008).  

The next link in the chain is from biological change to behavioural change in later life. 

Meta-analyses have found that lead exposure is associated with aggressiveness and other 

conduct problems (Marcus, Fulton, & Clarke, 2010), lower IQ (Schwartz, 1994), and 

impaired cognitive functioning (Vlasak et al., 2019, and Seeber et al, 2002).  

The final link is from behavioural changes to an increased propensity to commit crime. 

There are several possible mechanisms. Needleman pioneered research on lead exposure 

and aggressiveness (1996), suggesting it is linked to violent crime in particular. In 

 
4 They both convert easily to ions with 2+ charge. 
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contrast, Denno (1990) and Fergusson, Boden and Horwood (2008) argue that the link is 

through lower education outcomes, leading to worse life outcomes, which causes 

increased criminality. This mechanism is consistent with Becker’s (1968) economic 

theory of crime, where lower opportunity cost makes crime relatively more attractive, 

and suggests lead would show a stronger link to property crime than violent crime. A 

third mechanism was proposed by Gottfredson and Hirschi (1990), where lack of self-

control, combined with opportunity, causes higher crime rates. Lead has been associated 

with increases in impulsivity (Winter and Sampson, 2017), and so may cause an increase 

in crime through this process. If this mechanism were true we might expect increases in 

violent crime, non-violent crime, or both. Separating the different types of crime may help 

identify which, if any, mechanism lead acts through. However, whilst a range of 

mechanisms have been laid out linking lead in the environment to the propensity to 

commit crime, the strength of this link is a matter of empirical enquiry. The main 

objective of this paper is to quantify the strength of this link from the range of empirical 

work reported to date. To do this, we use meta-analysis. 

 

3. Data 

Meta-analysis data collection begins by specifying the criteria which studies must fulfil to 

be accepted into the analysis.  

The criteria we chose were: 

1. The explanatory variable must be some quantitative measure of lead exposure. 

2. Outcome variable must measure crime in some way (i.e. not other types of 

behaviour such as aggressiveness or depression). 

3. Must have original estimates, i.e. no review papers. 

4. Must have estimates that can be combined into a meta-analysis.5 

5. Be published before December 2019. 

6. Study must be available in English. 

 
5 By which we mean they must be convertible to a common estimate such as a partial correlation coefficient. 
See discussion below.  
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We then undertook a systematic literature review for papers on Web of Science, PubMed, 

and Google Scholar in 2019. We also searched on NBER and REPEC for working papers to 

include as much “grey” literature as possible. The keyword combinations used were: 

(“lead”, or “lead” AND “pollution”, or “lead” AND “poisoning”, or “lead” AND “exposure”, 

or “lead” AND “blood”, or “lead” AND “air”, or “lead” AND “paint”, or “lead” AND “water”) 

Combined with: 

(“crime” or “conviction” or “arrest” or “jail” or “prison”) 

After searching, papers were screened to see if they fulfilled the criteria, as laid out in the 

PRISMA6 flow diagram (figure IV). A review and description of the studies included is 

given in the appendix. 

The vast majority of the studies identified in the literature review did not fulfil criteria 

one or two and therefore did not estimate the lead-crime relationship. These were then 

filtered out at the screening stage. 31 papers did estimate the lead-crime relationship, but 

7 of these could not be converted into comparable effect sizes, failing criterion four. 

Criterion four is needed because estimates must be combined in a meta-analysis. 

Estimates are made comparable by converting into a common metric, such as the partial 

correlation coefficient (PCC). Most regression coefficients and simple correlations can be 

converted into PCCs easily. Odds ratios and standardised mean differences can also be 

converted into PCCs. However, five papers used risk ratios (Boutwell et al., 2016; 

Boutwell et al., 2016; Haynes et al., 2011; Stretesky and Lynch, 2001; and Write et al., 

2008). Risk ratios can be converted into odds ratios, which can then be converted to PCCs, 

but need a base rate risk to do so. It was not possible to infer a base rate risk from the 

data available in the papers. Therefore, these papers did not fulfil criteria four and were 

excluded at the eligibility stage. One other paper (Masters and Coplan, 1999) contained 

charts but not enough information to make PCCs and was excluded. Similarly, Denno 

(1990) did not have enough information to use the estimates. No papers were excluded 

based on criteria six, but search terms were only in English. This left 24 papers in the final 

meta-analysis dataset. 

 
6 PRISMA is Preferred Reporting Items for Systematic Reviews and Meta-Analyses. It is a standard across 
sciences for how to report any process where a systematic literature search with filtering is performed.  
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We organised accepted papers into a dataset following the guidelines for meta-analysis 

in economics in Havránek et al. (2020). Every paper gave multiple estimates for the effect 

of lead on crime. Meta-analyses tend to either select one estimate from each study as a 

“representative” estimate; or take all estimates and account for the potential clustering 

of estimates from the same study. Both are defensible. Taking all estimates means more 

information available for the meta-analysis. Representative estimates, on the other hand, 

may be less biased. For example, a researcher may show a simple OLS estimate before 

giving reasons for why it will be biased. They then go on to use their preferred method of 

estimation, which attenuates this bias. In most of our results we use all estimates, but as 

a robustness check we also test our results by using one representative estimate from 

each study. There was not always a clear representative estimate from each study. 

Therefore, choosing the estimates involves some subjective judgement. We tried to 

choose results mentioned in the abstract or as the main result. In general, we chose 

representative estimates which were less specific (i.e., totals preferred to subsample 

male/female, white/black results etc.), and results which had more covariates. 

In the full sample, there are 529 estimates from the 24 studies. The dataset forms an 

unbalanced panel, with each estimate being an observation and observations grouped by 

study. The studies included span across a variety of disciplines including economics, 

sociology, medicine, epidemiology, and criminology.  

Study effect sizes were then converted to the common effect size using PCCs. See the 

appendix for more details of how PCCs and their standard errors are calculated. 

Conversion is necessary because both lead and crime are measured in different ways in 

each paper, and therefore must be converted to be comparable. PCCs tend to be the 

common metric used in economic meta-analyses (see for example Doucouliagos (1995), 

Efendic and Pugh (2009), and Valickova, Havranek, and Horvath (2015)).  

PCCs measure the correlation between two variables holding other variables in the model 

constant. Their sizes are not intuitive. They have no unit and cannot be interpreted 

quantitively in a meta-analysis with varied measurements of outcome (Doucouliagos, 

2011). However, as they are bounded from -1 to 1, they do offer a sense of the magnitude 

and direction of an effect. In a survey of economic effect sizes Doucouliagos (2011) offers 

the following rough guidelines: 0.07-0.17 is a small effect size, 0.18-0.33 is a moderate 
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one, and above 0.33 a large one. For most of the paper, we follow this taxonomy, but a 

small effect combined with a large absolute change in a variable can still mean it is 

significant for welfare. Therefore, in section 4.5 we convert our main PCC estimates to 

elasticities using some additional data and assumptions to give a measure of the welfare 

impacts of our estimates.  

Table I presents the mean, median and weighted average PCC for each study (with 

weights being equal to the precision, 1/standard error). It also includes some information 

on the characteristics of each study.  

 

4. Methods 

4.1 General Approach7 

Let 𝜃𝑗  be an effect size of interest in study j. Study j uses some method to estimate 𝜃𝑗  

and these we denote as 𝜃𝑖𝑗 , for estimate i of study j. Researchers are often interested in 

both how close 𝜃𝑖𝑗  is to 𝜃𝑗 , and in how useful 𝜃𝑗  would be in predicting results from a 

similar event or study. This can be interpreted as the degree of external validity of a 

study.  

If 𝜃𝑗  is a draw from some distribution with a likelihood function 𝜓(⋅ |Θ) such 

that 𝜃𝑗 ~ 𝜓(⋅ |Θ) ∀ 𝑗 , then there exists some parameter(s) Θ which can give information 

about a new draw 𝜃𝑗 +1 from that distribution. It is the parameters contained in Θ that 

are estimated in a meta-analysis. There may be several parameters of interest, but in 

practice meta-analyses usually estimate two: 𝜃 , the mean of the distribution, and the 

variance 𝜏2. This is because meta-analyses tend to impose the assumption 

𝜃𝑗 ~ 𝑁(𝜃, 𝜏2) ∀ 𝑗 in the interests of efficient estimation. Even if this is not the true shape 

of the distribution McCulloch and Neuhaus (2011) show, both in theory and simulation, 

that maximum likelihood estimates are robust to different distributions of 𝜃𝑗  around 𝜃. 

If we also assume, as the individual studies themselves usually do, that 𝜃𝑖𝑗  follows a 

 
7 This sections owes much to the excellent expositions in Meager (2019), Rubin (1981), and Röver (2018). 
Much of their explanation deals with Bayesian methods but works equally well for non-Bayesian methods up 
to the point we arrive at.  
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normal distribution with mean 𝜃𝑗  and variance 𝜎𝑗
2 , then this leads to the normal-

normal hierarchical model of Rubin (1981): 

 

(1)     𝜃𝑗  ~ 𝑁(𝜃, 𝜏2) ∀ 𝑗 

(2)     𝜃𝑖𝑗~ 𝑁(𝜃𝑗 , 𝜎𝑗
2 ) ∀ 𝑖 and ∀ 𝑗 

(3)    𝜃𝑖𝑗  | 𝜃, 𝜎𝑗
2, 𝜏2 ~ 𝑁(𝜃, 𝜎𝑗

2  + 𝜏2) ∀ 𝑖 and ∀ 𝑗 

 

where the last expression follows from the previous two but is expressed in marginal 

form, as in Röver (2018). This marginal form can be further extended to be conditional 

on observable variables, common across the 𝜃𝑖𝑗 ’s, as we do in our meta-regression 

analysis.  

The variance of the effect size distribution 𝜏2is a crucial measure of how useful 

aggregation of estimates will be. If 𝜏2 is zero, then all studies are estimating the exact 

same effect and it is only the study variances that affect how well they can predict 𝜃𝑗 +1. 

This we call the common effect model following the Rice, Higgins, and Lumley (2018) 

terminology. As 𝜏2 grows larger, aggregation becomes less useful. 𝜏2 → ∞ represents an 

“apples and oranges” comparison where meta-analysis should never be undertaken.  

4.2. Between-Study Heterogeneity 

We begin investigating between-study heterogeneity in effect sizes by plotting each 

study’s weighted average PCC along with their 95% confidence intervals in figure V. 

Recall that the PCC is a statistical measure of the common variance between lead and 

crime after accounting for other factors and is bounded between -1 and 1. Only two of 

the studies have negative average PCCs. There are 13 studies with an average PCC of 0-

0.1 with some degree of overlap in confidence intervals (one measure of how much 

heterogeneity there is between studies). 9 studies have PCCs of 0.18-0.94, with less 

overlap in intervals. The two Nevin studies have particularly strong effect sizes and no 

overlap with other studies.  
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If in (3) 𝜏2 is zero and the common effects model is true, then a consistent estimator of 𝜃 

is a weighted average with the weights equal to 1/𝜎𝑗
2. The estimate variances 𝜎𝑗

2 are not 

observed. Instead, we use �̂�𝑖𝑗
2 , the estimated variance from each study estimate. If 𝜏2 ≠ 0 

then some estimated �̂�2 is needed for the weighted average (see appendix for details on 

common and random effects estimation). We show the common and random effects 

estimates at the bottom of figure V. The common effects point estimate is 0.01 and the 

random effects 0.18. The difference between them illustrates that between-study 

heterogeneity is important, as the lower the estimated heterogeneity between studies, 

the closer the random effects estimate will be to the common effects. A Cochran’s Q test 

(Cochran, 1954) strongly rejects the null of no between-study heterogeneity, with a p-

value of 0.0001. 

It is unlikely that the only source of this heterogeneity is the random, unobservable 

variances 𝜎𝑗
2 and 𝜏2. (3) can be extended to be conditional on a 1 × 𝐾 vector of variables 

𝒙𝑖𝑗. In this case the study specific estimates 𝜃𝑗  are a function of this variation in 𝒙 and 

we have the conditional distribution: 

(4)    𝜃𝑖𝑗  | 𝜎𝑗
2, 𝜏2, 𝒙𝒊𝒋 , 𝜷 ~ 𝑁(𝒙𝒊𝑗

′ 𝜷, 𝜎𝑗
2  +  𝜏2) ∀ 𝑖 and ∀ 𝑗 

If these variables are observable, we can include them in our estimation. To investigate 

sources of observable between-study heterogeneity, table II splits the data into sub-

samples, based on common characteristics. These characteristics are also used as 

covariates in the meta-regression analysis and described fully in section 4.4. We then 

compare three measures of between-study heterogeneity for each sample, �̂�2, 𝐼2 , and 

�̂�2. For each of these measures, the higher they are, the higher the estimated between-

study heterogeneity. �̂�2 and 𝐼2 are sensitive to the number of estimates and the 

variation in the standard error of those estimates. 𝐼2 tends to 100 as the number of 

studies included increases. �̂�2 is an estimate of the variance of the effect size 

distribution in (3) using the DerSimonian-Laird (1986) method and is less sensitive to 

the number of studies but does not give a sense of how important between-study 

heterogeneity is compared to within-study sampling variation.  

Looking at table II we can see which variables seem important for heterogeneity and the 

different estimated average effect sizes. The subsample of studies which control for 
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endogeneity has a lower estimated heterogeneity and a smaller effect size compared to 

the correlational sample. Endogeneity can arise from unobserved variables correlated 

with both crime and lead. These could bias upwards the estimate of the effect of lead on 

crime. We cannot rule out that these variables may cause individuals both to commit 

more crime and be more exposed to lead, rather than lead being the cause. Therefore, 

the difference between the “addressing endogeneity” sample and the full sample could 

be related to these factors.  

 

Studies that look at individual propensity to commit crime have lower estimated 

heterogeneity and estimated effect size compared to studies that look at crime 

committed within a geographic area. Studies which use homicide as the dependent 

variable appear to have less heterogeneity and find a stronger effect size. This reduction 

in heterogeneity may be due to lower measurement error in homicide data compared to 

other types of crime, combined with more similar classification of this crime across 

countries, and therefore less noise in the data. Whether a study reports odds-ratios is 

important for heterogeneity. Finally, when race, gender, education and income 

covariates are included in an estimation, these tend to lower the effect size and these 

subsamples also show less between-study heterogeneity than those which do not 

include these covariates. The estimated differences in effect size and heterogeneity 

between subsamples indicates observable variation is important and must be taken into 

account when we estimate an “average effect”. We incorporate the observable variation 

indicated in table II into our meta-regression analysis in section 4.4.  

A further, and common source of heterogeneity in effect sizes in meta regression 

analysis comes from publication bias. We investigate this in the next section. 

4.3. Publication bias 

Publication bias is a well-known problem across disciplines (see DeLong and Lang, 

1992; Ioannidis, 2005; Ioannidis, Stanley and Doucouliagos, 2014; Ioannidis, 2016; 

Szucs and Ioannidis, 2017; and Ferraro and Shukla, 2020). Papers which contain 

statistically significant effect sizes are more likely to be published than those which 

show no effects, or those which contain counter-intuitive results (also known as the 
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bottom-drawer problem). It is standard practice to test for the presence of publication 

bias in meta-analysis.  

The first and most common step is to simply chart the data and visually inspect for bias, 

using a funnel plot. Figure VI plots PCCs against their precision. A funnel with no bias 

should be symmetrical around one or more central tendencies. The estimates will tend 

to spread out as the precision decreases, but they should do so symmetrically if this is 

only due to sampling noise. Figure VI shows a pronounced asymmetry in the estimates, 

suggesting there may be a positive bias. It is also possible this is due to heterogeneity 

within the sample. We explore this possibility in section 4.4. 

More formal testing of publication bias is also possible. A linear relationship between 

the estimate and its precision, as there seems to be in figure VI, would indicate the 

presence of publication bias (see Stanley and Doucouliagos, 2014). This naturally leads 

to the estimating equation (5). 

(5)  𝜃𝑖𝑗 = 𝜃 +  𝛽𝐹�̂�𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗; where 𝜖𝑖𝑗  ~ 𝑁(0, 𝜎𝑗
2 ) and 𝑢𝑗  ~ 𝑁(0, 𝜏2 )  

This is the combined Funnel Asymmetry Test (FAT) and Precision Effect Test (PET). 

Here the FAT is 𝛽𝐹, and is an estimate of the size and sign of publication bias. It is a 

function of the inverse Mills’ ratio (Stanley and Doucouliagos, 2014). If positive then 

estimates that are positive are more likely to be published than negative ones. This test 

also gives an estimate of 𝜃 that takes into account this bias, called the PET. (5) nests the 

common effects model where 𝜏2 is zero. 

The test in (5) would be subject to heteroskedasticity, as can be observed from figure VI. 

We have estimates of the heteroskedasticity in �̂�𝑖𝑗. These can therefore be used to 

weight the regression and we estimate the test with weighted least squares following 

Stanley (2008). 

(6)  �̂�𝑖𝑗 = 𝜃
1

�̂�𝑖𝑗
+ 𝛽𝐹 + 𝑣𝑗 + 𝑒𝑖𝑗 
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Here the dependent variable �̂�𝑖𝑗  is now the t-ratio, rather than the estimate alone. The 

intercept of the regression is the FAT and the coefficient on 
1

�̂�𝑖𝑗
 is the PET.  

We estimate three variations on the FAT-PET. First with OLS and clustered standard 

errors by study, but no study fixed effects; second, a variation of this where we regress 

on the variance rather than the standard error8; and a full hierarchical FAT-PET with 

study fixed effects. We estimate this with restricted maximum likelihood (REML), as 

Monte Carlo simulations suggest REML performs well for unbalanced panels (Baltagi, 

Song and Jung, 2000). As a robustness check, we also estimate the FAT-PET and FAT-

PEESE with only the representative estimates, rather than the full sample, and the 

results are similar (see appendix for details). The results in table III show positive bias 

is present across all tests, albeit with wide confidence intervals. They also show the 

estimate of average effect after adjusting for bias is close to zero for all tests.  

The final test for publication bias used here is the Andrews and Kasy (2019) method. 

Monte Carlo simulations show it is among the best performing bias estimators and it 

performs particularly well when between-study heterogeneity is high (Hong & Reed, 

2020), as we have in our sample. Andrews and Kasy observe that given different 

probabilities of publication, due to commonly used significance bounds, we will observe 

a truncated sample of effect sizes. If we set one probability of observing a value as a 

reference, they show we can identify the other probabilities relative to this. These 

probabilities can now be estimated up to scale with maximum likelihood. We then use 

these estimated, relative probabilities to reweight the observed sample. This allows us 

to reconstruct the true, untruncated distribution and estimate the mean of the effect 

size distribution. 

 

8 The Funnel Asymmetry test and Precision Effect Estimate with Standard Error (FAT-PEESE). Stanley 

and Doucouligas (2014) find the FAT-PEESE can sometimes perform better in simulations. They find the 

FAT-PEESE seems to especially perform better when the true effect is not equal to zero.  
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Using this method, we estimate three publication probabilities relative to that of a 

positive t-ratio greater than 1.96. That is, relative to a positive effect size, significant at 

the 95% level. The three probabilities are: negative and significant at a 95% level; 

negative and not significant; and positive and not significant. We also estimate the bias-

adjusted mean effect size, assuming that the publication probability bias is not 

symmetric around zero.  

The results of the test are in table IV. We can see that negative and significant estimates 

are 200 times less likely to be published than positive, significant ones. In fact, negative 

estimates in general are less likely to be published than positive estimates, given what 

we would expect from an untruncated distribution of t-ratios. Although the standard 

errors are large and there is some overlap of 95% confidence intervals for the three 

estimated publication probabilities, the 95% intervals for negative estimates do not 

cover 1, suggesting negative estimates are far less likely to be published than positive 

and significant estimates. The estimate of the mean effect size, after adjusting for 

publication bias, is -0.642, but the 95% confidence interval again is relatively large and 

covers zero. 

All tests suggest publication bias is present in the sample. The tests also suggest the true 

mean effect size of lead on crime may be close to zero, but this could be due to the 

relatively small sample, or to characteristics of the studies. These characteristics can be 

investigated more thoroughly with a meta-regression analysis.  

4.4. Meta-Regression Analysis 

Meta-regression analysis (MRA) follows from (4) where we include common observable 

variation in our estimation. Given all tests suggest the presence of publication bias we 

include the FAT in all regressions. We also weight all regression covariates by the 

standard errors as in (6). Therefore, the specification is the same as in (6) except we now 

also regress on further weighted observable covariates, and the coefficient on the 

precision is only an estimate of the average effect size when all other covariates are set 

to zero.  
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The covariates included are based on common characteristics of the studies that are 

suggested by the literature. Their descriptive statistics are included in table V. The 

majority are dummy variables indicating whether that characteristic is present for that 

estimate. All variables are coded at estimate level, not at study level. That is, different 

estimates from the same study may have different characteristics, and therefore have 

different values for the covariates. There is a dummy variable that equals one when an 

estimate comes from a high-quality study design that attempts to deal with endogeneity 

concerns. There is a dummy variable which is one when an estimate is of crime in an area, 

and zero when it is at the individual level. There are four dummy variables which indicate 

whether specific controls were included in the estimation. Lead exposure is correlated 

with poverty (Baghurst e al. 1999) and race (Sampson and Winter, 2016), may have 

different effects on men and women (Denno, 1990), and may have a relationship with 

educational outcomes (Fergusson, Boden and Horwood, 2008). Therefore, when an 

estimation includes these variables we might expect it to influence the estimate. The 

interpretation of the effect of these variables depends on where they are in the causal 

chain9. If these variables are confounders, causing changes in lead and changes in crime, 

then omitting them will tend to overstate the effect of lead on crime (given they change 

both in same direction). If they are mediators, changed by lead and then changing crime, 

then conditioning on them can lead to understating the effect of lead on crime. This is 

especially important when study designs do not use some method to deal with 

endogeneity issues. Of course, there are other variables that may be important controls, 

but these were not found to be common enough across studies to include. 

Next there are three dummy variable that describe what type of crime was used as the 

dependent variable (homicide, violent, and non-violent), with a reference group of total 

crime. This allows us to test whether the different mechanisms proposed in section 2 

matter. The violent crime category nests homicide within it. They are separate categories 

because homicide data is thought to be the best quality crime data, and thus less likely 

suffer from bias (Fox and Zatz, 2000). We next have two dummy variables representing 

possible estimation effects. One for if simple OLS was used, another for if maximum 

likelihood was used. The reference group is any other estimation such as GMM or mean 

 
9 Grateful to Paul Ferraro for his comments on this. 
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differences. We have two dummy variables for further estimation effects. One for if panel 

data were used, and another for if the results are reported as odds ratios. A further three 

dummy variables are geographic dummies that equal one when an estimate come from a 

continent, with a reference group of Africa. These are added as it allows us to see how 

much estimates differ depending on where the data come from. The final dummy variable 

equals one when a direct measure of lead, from either blood, bone, or dentine samples, is 

used in the estimation and zero when a proxy measure or estimate, such as leaded 

gasoline use in an area, is used. This allows us to test whether there is a systematic 

difference in effect sizes found when lead levels are taken directly from subjects, which 

we might expect to give a more accurate measure of the true effect, rather than proxied. 

The final two covariates are the sample size and the number of covariates included in the 

estimation. These two variables have been standardised to aid the restricted maximum 

likelihood convergence.  

We estimate many specifications due to model uncertainty. Our sample is relatively small 

and coefficient estimation varies significantly in alternative specifications. The number 

of different covariate combinations is 2𝐾  where 𝐾 is the total number of covariates. It is 

common in the meta-analysis literature to employ some method of model averaging or 

shrinkage to deal with model uncertainty10. However, with this many covariates and 

modern computational power it is possible to estimate all 2𝐾  specifications11. In addition, 

table II showed that some subsamples have substantially less heterogeneity than the full 

sample. It may be that these sub-samples suit aggregation better than the full sample. For 

example, we might expect studies with individuals as the unit of analysis to share much 

more common information than those that have a geographic area as the unit of interest. 

We therefore also estimate all covariate specifications for these subsamples. It is not 

possible to estimate every combination as some dummy variables no longer have any 

variation in the subsamples, leading to collinearity. This can also lead to other variables 

being excluded as they become the new base case (for example if there are no African 

studies in a subsample, then another continent becomes the base case). A full list of the 

covariates included for each subsample is in table VI. We estimate every possible 

 
10 For an example, see Gechert, Havranek, Irsova, and Kolcunova (2020) 
11 As a robustness check we perform Bayesian Model Averaging in the appendix. The posterior mean PCC using 
the full sample and evaluated at the sample averages is 0.06. Lower than the method we use here.  



16 
 
 

combination of covariates for the full sample and the subsample. We include the FAT, the 

estimate of publication bias. We estimate with REML and include study fixed effects. In 

total, we estimate over 1 million meta-regression specifications.  

The distribution of coefficient sizes for the full sample estimation is in plotted in figure 

VII. The means, medians and standard deviations are given in table VII. We can see that 

the FAT mean and median is much smaller than the FAT coefficient in our tests in table 

III. This suggests some of the bias may be explained by observable heterogeneity between 

studies. However, there remains some residuals bias nonetheless, and this has a very 

large effect on the PCC estimate of lead on crime. The mean and median of the coefficient 

on the addressing endogeneity dummy is negative, suggesting studies that control for 

endogeneity tend to have smaller effect sizes. Studies which have an area as a unit of 

interest tend to find larger effects than those which use individuals. The coefficient on the 

area dummy has a mean of 0.2 and a median of 0.16. Almost all the density of this 

coefficient is positive in figure VII. The coefficient on whether a study directly measures 

lead levels has a negative mean and median, suggesting direct measures of lead levels 

lower the estimated effect of lead on crime compared to studies that use a proxy measure 

such as lead air pollution. When we turn to different kinds of crime, we can see that the 

distributions of both violent and non-violent crime peak around zero and have small 

means, and medians. This suggests having violent or non-violent crime as the dependent 

variable does not lead to systematically different estimates compared to the base case, 

total crime. It is different when the dependent variable is homicide. Here the mean and 

median size is -0.05 and every estimate is negative, suggesting that a dependent variable 

of homicide tends to lower the estimated effect size.  

Looking at the four important controls, education and race tend to lower the PCC, while 

controlling for gender or income tend to raise it, but only the mean and median of the 

race control are further than 0.01 from zero. In estimation effects, OLS has a large 

negative mean and median, tending to lower the PCC, while maximum likelihood has a 

positive mean and median but not as large in absolute values. Using panel data and 

reporting odds ratios both tend to have a large negative effect on the size of the 

lead/crime estimate. For continent dummies, an estimate using North American data has 

a strong negative effect on the PCC, with a mean of -0.28 and median of -0.29. Europe and 

Australia on the other hand tend to raise the PCC relative to the base case, Africa. 
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However, by far the majority of estimates, 70%, use North America data, compared with 

16% using European data, and around 7% each for Australasia and African data. More 

covariates tend to lower the PCC, with a mean of -0.1 and median of -0.11. Finally, the 

sample size does not seem to affect the estimate of lead on crime, beyond the publication 

bias effects in the FAT. This is reassuring, as it means small sample studies are not 

estimating systematically different effect sizes, it is just that they tend to only be 

published when they are positive and significant.  

Overall, for the full sample the results show that observable variation accounts for some 

of the large differences in effect sizes we observe in the sample. By the far the largest 

coefficient is our estimate of publication bias. Beyond that, a group of other variables have 

large effects: whether a study uses data from North America; estimation effects, such as 

using panel data or reporting odds ratios; whether a study examines individuals or areas, 

and how many covariates an estimate includes.  

We next use the information from each specification to construct a distribution of 

estimates of the average effect of lead on crime. We are now estimating an average effect 

conditional on the observable heterogeneity in our specifications. In practice, meta-

analysis tends to do this in two ways, either using the sample averages or taking some 

“ideal” specification. We do both. That is, for each specification we generate a predicted 

PCC estimate of the effect of lead on crime, using both the sample averages, or by using 

an ideal specification, and not including the FAT in the predicated value (i.e. removing the 

publication bias). The ideal specification we use is one that includes controls for race, 

education, income and gender, that uses individual data, directly measured lead levels, 

controls for endogeneity, uses panel data, is estimated with GMM (i.e base case compared 

to OLS and ML), uses total crime as the dependent variable, uses North American data (as 

most of our sample is from there), and uses the sample averages for sample size and 

number of covariates. This ideal specification is chosen to represent a robust and high-

quality estimation, and as such we would expect it be generally lower than the sample 

averages estimates.  

We plot the kernel density distributions for the full sample for using both sample 

averages and the ideal specification in figure VIII. In each there is a distribution of 

524,288 predicted values. The mean and median PCC for the sample averages 
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distribution are 0.11 and 0.12 respectively, which is “moderately positive” according to 

the Doucouliagos (2011) taxonomy (in section 4.5 we look at what these imply for 

elasticities). The distribution appears to be bimodal with one peak close to zero and the 

other around 0.2. The distribution of the ideal specification is not bimodal and the density 

peaks close to zero and is roughly symmetrical. The mean and median are -0.05 and -0.02 

respectively. As expected the ideal specification is lower than the sample averages, but 

this is in part due to the North America variable. An alternative specification where with 

the “Europe” dummy set to one instead gives a mean and median of 0.11 and 0.04. The 

median though is still much lower than in the sample averages distribution.  

We next restrict the sample to only high-quality studies that estimate a causal effect 

rather than an association: our “addressing endogeneity” sub-sample. This consists of 

seven studies and 211 estimates. It is common in meta-analysis to exclude correlational 

studies altogether (e.g., Kraft, Blazer and Hogan, 2018). Although we have not excluded 

those studies in this meta-analysis, we now examine what a meta-analysis estimate with 

only causal studies would be. We saw in table II that the addressing endogeneity 

subsample has lower between-study heterogeneity than the full sample, so aggregation 

may yield comparatively more information.  

We plot the sub-sample average specification and ideal specification in figure IX 

(excluding those variables that cannot be included in the estimation, see table VI). The 

distribution of the sample average predicated values is tight around zero with a mean and 

median of 0.01, and a sample standard deviation of 0.01. The ideal specification may be 

expected to perform less well as we have fewer variables in the addressing endogeneity 

sample. The mean is -97 due to a few negative estimates with large absolute values, and 

around 13% of the distribution is outside the feasible interval of a PCC [-1,1]. However, 

most of the density is once again close to zero and the median is 0.02. The results suggest 

there is a systematic difference between the high-quality causal estimating studies and 

the rest of the sample.  

We next plot several other subsample distributions of interest in figure X. The means 

medians and standard deviations for the full sample and all subsamples are given in table 

VIII. We also show the percentage of estimates which fall outside the feasible [-1,1] 

interval, which suggests misspecification. The difference between the area and individual 
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sample is striking. The area sample means and medians are much larger than the 

individual sample for both the sample average specification and the ideal specification. 

The individual sample mean and median PCCs are close to zero, although larger in all 

cases, and the distributions are tight around the means compared to the area sample. This 

suggests that covariates matter less for the individual sample effect sizes compared to the 

area sample. Similar to the area-individual comparison, the correlational sample has 

much higher means and medians than the addressing endogeneity sample.  

Comparing homicide, violent, and non-violent crime samples we can see again in table 

VIII that a large part of the distributions are outside the feasible interval of a PCC, 

suggesting misspecification and that the results may not be reliable. In the sample 

average specifications, the non-violent and homicide samples are the only ones with 

some percent of the distribution outside [-1,1], suggesting it may be an issue with those 

samples. The standard deviations for all the crime samples are large even when we only 

look at the sample average specifications in table VIII. Overall, the results suggest these 

samples may be less informative than the others, but what we can say is that they show 

positive, moderate to large, mean and medians PCCs. The non-violent and homicide 

samples generally show larger PCCs than the violent crime sample but, given the large 

variance of the distributions and the number of unfeasible PCC values returned, this may 

be due to model or sample issues. We can say that violent crime does not have a stronger 

relationship with lead compared to non-violent crime. We cautiously suggest that if lead 

does have an effect on crime it is across all categories of crime. 

4.5. Estimating an Elasticity 

We use PCCs to estimate the effect of lead on crime in this meta-analysis because studies 

use varying measures of lead and crime, with varying units of interest, and so cannot be 

directly compared. We find that the median PCC, evaluated at the sample averages, for 

the full sample is 0.11. This is a “small effect”, according to the Doucouliagos (2011) 

taxonomy. The equivalent PCC when only the high-quality, addressing endogeneity 

sample is considered is 0.01, below the threshold for a small effect according to 

Doucouliagos, and close to zero. However, a small effect size does not necessarily imply 

an economically insignificant one. When there are very large changes in a variable even 

small effects can sum to a huge change in welfare. Lead levels have dropped significantly 
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since the 80s in many countries as shown in figure II. We therefore examine plausible 

estimates of a lead-crime elasticity, using our PCC estimates. The PCC and the elasticity 

are related, but not in a straightforward manner. This forces us to make some strong 

assumptions in the interests of welfare analysis.  

Given a PCC and the change in a given measure of crime for a given measure of lead, 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑
, 

then the relationship between the two is given in (7). 

(7) 𝑃𝐶𝐶 =  
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)

𝑠𝑑(𝐿𝑒𝑎�̃�− �̃�′𝛾1)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ −�̃�′𝛾2)
 

Where 𝑠𝑑(. ) means the standard deviation. 𝐿𝑒𝑎�̃� −  �̃�𝛾1 are the residuals from a 

regression of Lead on 𝒛, a vector of variables related to lead and crime, where both lead 

and 𝒛 have been standardised. Similarly, 𝐶𝑟𝑖𝑚𝑒̃ − �̃�𝛾2 are the residuals from a regression 

of Crime on 𝒛, where both have been standardised. If we wish to attach a causal 

interpretation to the elasticity, we can think of 𝒛, following Peters , Bühlmann, and 

Meinshausen (2016), as the minimum set of variables under which the distribution of 

Crime is invariant when conditioned on both 𝒛 and Lead.  

It can be seen that a PCC will always share the same sign as 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑
 but will be inflated or 

deflated according to the relative size of the standard deviations in (7). 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)
 is 

equivalent to a standardised coefficient. The intuition for the last ratio is as follows: the 

greater the variation in Lead that is not explained by 𝒛, the larger the PCC, because the 

overlapping variation between the independent effect of Lead and Crime is relatively 

greater. The PCC is also greater the larger the amount of variation in Crime explained by 

𝒛. This is because the share of unexplained variation in Crime becomes smaller, so the 

share of variation jointly explained by Lead and 𝒛 increases. As more of the variation in 

Crime is explained by both Lead and 𝒛, their PCCs will tend to 1 or -1. 

To evaluate an elasticity at the sample means we multiply both sides by 
𝐿𝑒𝑎𝑑

𝐶𝑟𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅

̅̅ ̅̅ ̅̅ ̅
, where the 

bar indicates the mean. We can then rearrange (7) to put it in terms of the elasticity η. 

(8) η =  
𝐿𝑒𝑎𝑑

𝐶𝑟𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅

̅̅ ̅̅ ̅̅ ̅ 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ −�̃�′𝛾2)

𝑠𝑑(𝐿𝑒𝑎�̃�− �̃�′𝛾1)
𝑃𝐶𝐶 
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We can see that the size of the PCC relative to the elasticity depends on three ratios. The 

first two, the relative means and standard deviations, depend on the measures of crime 

and lead. We use homicide and blood lead data from the US as an illustrative example to 

examine plausible elasticities, given the fall in both violent and non-violent crime was 

particularly pronounced there. The means, standard deviations, and sources are given in 

table IX. Given these, the relative size of the PCC to the elasticity depends upon the third 

ratio of residual standard deviations. This ratio could theoretically take any value 

between zero and infinity, and therefore so could the elasticity (assuming the PCC is 

positive). We therefore look at what are plausible values for this ratio and what is the 

range of the elasticity given these values. 

The maximum value the numerator 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2) can take is one, representing no 

common variation between 𝒛 and Crime. We hold it at one, to inflate the PCC as much as 

possible. The final element of the equation is 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1). This is the residual 

variation in Lead not explained by 𝒛. The lower this is, the more the PCC will be inflated, 

and therefore the greater the elasticity. The elasticity is convex in 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1), 

decreasing at a decreasing rate.  

Figure XI plots the relationship between the elasticity and 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1), given the 

estimated mean PCCs, the values in table IX, and holding 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2) constant at 

the maximum value of one. The elasticities drop sharply with an increase in the 

denominator 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2), with the elasticity for the addressing endogeneity 

sample approaching close to zero almost immediately. The elasticity for the full sample 

slopes down more gently but even so does not suggest a large elasticity except at 

extremely small values of 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2).  

We can now propose a range of plausible values for the elasticity. Given the uncertainties 

around the ratio of unexplained variations in (8), this is somewhat arbitrary, but we hope, 

given the discussion above, not unreasonably so. There is no compelling reason to 

suppose 𝒛 would explain more of the variation in Lead than in Crime. Nevertheless, if we 

take as a lower bound that 𝑠𝑑(𝐿𝑒𝑎�̃� −  �̃�′𝛾1) is ten times as large as 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − �̃�′𝛾2) , 

and as a conservative upper bound that they are equal, then we can give a range of values 

based on our estimated PCCs. For the full sample PCC, this gives an elasticity of 0.22-0.02. 
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For the addressing endogeneity sample PCC, the range is 0.03-0.00, to two decimal places. 

The median blood lead level in children fell 88% from 1976-2009. The full sample 

elasticity estimates therefore would suggest the fall in lead has decreased homicide in the 

US by between 19.4% and 1.8%. The equivalent decrease for the addressing endogeneity 

sample is between 2.6% and 0%. The US homicide rate fell 54% from its peak in 1989 to 

2014. This would mean that lead accounts for between 36% and 3% of the decrease in 

homicide using the full sample elasticity, and 5%-0% using the addressing endogeneity 

elasticity. Our generous assumptions of the lower bound on the ratio of residual variation 

in (8) imply that lead may be an important factor in the fall in homicide, but it does not 

account for the majority of the fall. Our upper bound on that same ratio implies lead 

accounts for very little of the fall in crime.  

 

 

5. Discussion and Conclusion 

Changes to the amount of lead in the environment have been put forward as one of the 

main causes of the decrease in crime, especially homicide, in many western countries. We 

performed the first meta-analysis of the effect of lead on crime. We find there is 

publication bias in the lead-crime literature, and that meta-analysis estimates that do not 

control for this will overstate the effect of lead on crime. We find that the average meta-

analysis estimate for high-quality studies that take into account endogeneity is much 

smaller than for the full sample, or for the correlational sample. Similarly, the average 

effect size estimate for studies that have individuals as the unit of interest is much smaller 

than for the sample of studies that have a geographic area as the unit of interest. The full 

sample and area sample distributions have most of their density in the positive side of 

zero. Their average effects suggest a small to moderate effect, while both the addressing 

endogeneity and individual effect distributions are tight around zero and suggest there 

may be no effect. When we examined the differences between lead’s effect on homicide, 

violent and non-violent crime, we could not confidently state there was any difference 

between them. Finally, we performed back-of-envelope calculations to convert our 

partial correlation coefficient estimates into elasticities. This gave a range of 0.22-0.02 

for the full sample and 0.03-0.00 for the high-quality, addressing endogeneity sample. 
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This suggests the fall in blood lead levels may have led to a fall in homicide in the US of 

between 36-3% with the full sample elasticity, and between 5%-0% for the addressing 

endogeneity sample elasticity. 

Overall, the results suggest that declines in lead pollution are not the cause of the majority 

of the fall in crime observed in many western countries. Our results however leave open 

the possibility that it may have a socially significant effect. The upper end of our range of 

elasticities would imply the lower lead pollution today saves around 6,000 lives a year in 

the US. The lower end, however, would mean lead has no effect and we must look to other 

causes entirely. We are unable to provide estimates on the size of other causes here but 

hope our results can provide a rough benchmark for relative importance in future meta-

analysis. It is possible that the large differences in our samples can be reconciled. For 

example, the large difference between the individual and area samples may be because 

crime has fallen at the extensive margin rather than the intensive margin. Tcherni-Buzzeo 

(2019) observe that around 5% of the population are responsible for 50% of crime, and 

that the fall in crime in the US is likely due to falls in this high-crime population, rather 

than less crimes per individual in that population. If less lead pollution only meant less 

probability of committing crime for this small slice in the population, it might 

nevertheless lead to a large fall in crime at the area level.  

There are a number of limitations to our analysis. Most importantly, the sample size is 

not large. We have 24 studies and 529 estimates, this is not unusual for a meta-analysis 

but, particularly for our subsample estimates, this could play a part in the differences. It 

may explain why so much of the distribution for the different types of crime in table VIII 

were outside the feasible PCC interval of [-1,1]. We attempt to mitigate this by using 

various tests for publication bias, and estimating many different specifications, but we 

cannot rule out that the results are due to small sample effects. Secondly, the between-

study heterogeneity is large in our sample. This calls into question how comparable the 

studies are. This is to be expected as studies use different concepts and measures of crime 

and lead, different units of interest, and different estimations, from simple correlations 

to LATEs. We try to mitigate this by converting to PCCs, using different sub-samples that 

have lower between-study heterogeneity, and using meta-regression with covariates. 

However, even with these mitigations, it may be that the literature is not comparable and 

therefore meta-analysis estimates will be noise. In this case it casts doubt on the external 
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validity of the studies examining the lead-crime hypothesis. The solution would be far 

more studies that estimate elasticities using comparable measures of lead and crime.  

For policymakers, our results are a warning against assuming the large crime levels in 

past decades cannot return now that lead pollution is much lower. The results are not a 

signal that lead abatement is fruitless. As outlined in section 2, the evidence of harmful 

biological and health changes due to lead is overwhelming. There is no known safe level 

of lead. Even if outcomes higher up the causal chain, such as crime, are not as affected by 

lead, the evidence still shows lead abatement will increase health outcomes, especially 

for the very young.  

For future research, we have two main suggestions. The first is that there are enough low 

sample size, correlational studies in the lead-crime literature. What is needed now is high 

power, high-quality causal estimates of the effect of lead on crime. The value added of 

such studies would be increased by testing the effect on different types of crime, and the 

possible interaction of lead with other potential causes. The second is that more high-

quality causal estimates of the elasticity of other causes of crime are needed. Our results 

suggest lead is not responsible for the majority of the fall in crime since the 80s and 

therefore leaves open room for other explanations. These explanations must account for 

the fact homicide has fallen across many (but not all!) western countries at roughly the 

same time. They must also account for the fact that total crime has risen in Europe and 

fallen in the US, while the homicide rate has fallen in both. Further comparison of the 

relative shares of responsibility for the fall in crime, as well as the interaction between 

causes, may also be fruitful and we suggest further meta-analyses, using the up-to-date 

methods, would be helpful in this area.  
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Figure I  

Homicide rate per 100,000 by country 

Sources: New Zealand Police (2018); Buonanno et al. (2011), UK Home Office (2019); Uniform Crime 

Reports for the United States (2019); Falck, Von Hofer & Storgaard (2003); Statistics Canada (2019); 

Birkel and Dern (2012). 
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Figure II 

Lead Emissions by Country (1000 kg Y−1 ) 

Source: Dore et al. (2006), Schwikowski et al. (2004), Kristensen (2015), Statistical Abstract of the United 

States (2009). 
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Figure III 

Total recorded crime rate per 100,000 in USA and seven 

European Countries 

Source: Buonanno et al. (2011). The countries are: Austria, France, Germany, Italy, The Netherlands, Spain, 

and the UK. 
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Figure IV 

PRISMA Flow Diagram of selection process 



41 
 
 

 

Figure V 

Forest plot 

Notes. Chart shows weighted average partial correlation coefficients (PCCs) of each study’s effect size along 

with corresponding 95% confidence intervals. The weighted averages are calculated by first normalizing 

the PCCs so that confidence intervals can be constructed, then the fixed effects average is calculated, finally 

the estimates are converted back to PCCs (see appendix for details).  

Bottom of table shows fixed effects and random effects estimates for all studies combined (see appendix 

for details).  

Numbers on right are the point estimates and the 95% confidence intervals.  
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Figure VI 

Funnel chart 

Notes. PCC = Partial Correlation Coefficient 

Precision is one divided by the standard error of the PCC.  

“Significant” means statistically significant at the 95% confidence level using two-sided critical values of a 

normal distribution.  

 

 

 

 

 

 

 

 



43 
 
 

 

Figure VII 

Densities of covariates in full sample meta-regressions 

Notes. Chart shows kernel densities for the meta-regression estimated coefficients on each covariate. Note 

different axes scales. 
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Sample averages    “Ideal” specification 

 

Figure VIII 

Density of meta-analysis average effect size estimates from full 

sample 

Notes. Chart shows kernel densities for the distribution of meta-regression estimated average effect 

sizes. Chart on left shows estimated average effect for each specification evaluated at the sample 

averages. Chart on right shows estimated average effect for each specification evaluated at an “ideal” 

specification. X axis truncated at feasible interval of a PCC, [-1,1]. 
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Sample averages    “Ideal” specification 

 

Figure IX 

Density of meta-analysis average effect estimates for “Addressing 

Endogeneity” subsample 

Notes. Chart shows kernel densities for the distribution of meta-regression estimated average effect 

sizes for the addressing endogeneity sub-sample.. Chart on left shows estimated average effect for each 

specification evaluated at the sample averages. Chart on right shows estimated average effect for each 

specification evaluated at an “ideal” specification. X axis truncated at feasible interval of a PCC, [-1,1]. 
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Sample averages    

 

 “Ideal” specification 

 

Figure X 

Densities of Meta-analysis average effect estimates from 

subsamples 

Notes. Chart shows kernel densities for the meta-regression estimated average effect sizes for a 

number of subsamples. Top chart shows estimated average effect for each specification evaluated at 

the sample average for each subsample. Chart on right shows estimated average effect for each 

specification evaluated at an “ideal” specification. X axes truncated at feasible interval of a PCC, [-1,1]. 
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Figure XI 

Estimated Elasticity of on lead on crime 

Notes. Chart shows how η, the calculated elasticity of lead on crime, varies with changes in 𝑠𝑑(𝐿𝑒𝑎�̃� − �̃�′𝛾1), the 

standard deviation of the residual in a regression of a set of standardised variables �̃�, and the standardised measure 

of lead 𝐿𝑒𝑎�̃�.  
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Table I – Studies Used in Meta-analysis 

Study & Year Median Mean 

Weighted 

Average Type of Crime 

Individual 

or Area 

Addresses  

Endogeneity 

Aizer & Currie (2019) 0.027 0.019 0.019 Violent and non-violent  Individual Yes 

Barrett (2017) 0.556 0.556 0.589 Violent  Area No 

Beckley et al. (2018) 0.065 0.061 0.063 Violent and non-violent  Individual No 

Billings & Schnepel (2018) 0.122 0.113 0.103 Violent and non-violent  Individual Yes 

Curci & Masera (2018) 0.025 0.043 0.029 Violent  Area Yes 

Dills, Miron & Summers (2008) 0.022 0.021 0.021 Violent and non-violent Area No 

Feigenbaum & Muller (2016) 0.189 0.192 0.180 Only Homicide Area Yes 

Fergusson et al. (2008) 0.080 0.079 0.080 Violent and non-violent  Individual No 

Grönqvist, Nilsson and Robling (2019) 0.002 0.003 0.003 Violent and non-violent  Individual Yes 

Lauritsen et al. (2016) 0.740 0.495 0.742 Violent and non-violent  Area No 

Lersch & Hart (2014) 0.043 0.043 0.043 Violent and non-violent  Area No 

Manduca & Sampson (2019) 0.087 0.087 0.087 Violent and non-violent  Individual No 

Masters et al. (1998) 0.051 0.061 0.061 Violent and non-violent  Area No 

McCall & Land (2004) -0.017 -0.017 -0.017 Only Homicide Individual No 

Mielke & Zahran (2012) 0.526 0.497 0.515 Violent  Area No 

Needleman et al. (2002) 0.336 0.307 0.324 Non-violent  Individual No 

Nevin (2000) 0.914 0.912 0.937 Violent  Area No 

Nevin (2007) 0.808 0.710 0.874 Violent and non-violent  Area No 

Nkomo et al. (2017) 0.004 0.052 0.088 Violent  Individual No 

Reyes (2007) 0.059 0.053 0.053 Violent and non-violent  Area Yes 

Reyes (2015) 0.026 0.036 0.029 Violent and non-violent  Individual Yes 

Sampson and Winter (2018) -0.065 -0.046 -0.046 Violent and non-violent  Individual No 

Stretesky & Lynch(2004) 0.396 0.352 0.331 Violent and non-violent  Area No 

Taylor et al. (2018) 0.371 0.377 0.429 Violent  Area No 

       

 

Notes. Table shows median and mean partial correlation coefficient (PCC) estimates from each study of the 

effect of lead on crime. It also shows an average where estimates are combined in a weighted average with 

the weights equal to one divided by the standard error. Table also shows what type of crime was used as 

dependent variable in each study, whether the study unit of interest was an individual or a geographic area, 

and whether any estimates in the study used a design that attempted to account for endogeneity. All coding 

is done at an estimate level, so a study may include both “addresses endogeneity” and “correlational” 

estimates, violent and non-violent estimates etc. 
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Table II – Meta-Averages and Heterogeneity Estimates by 

Subsample  

Sample RE Estimate SE �̂�𝟐 �̂�𝟐 �̂�𝟐 Studies Estimates 

Full Sample 0.182 0.002 0.002 99 111 24 529 

Addressing Endogeneity 0.013 0.001 0.000 90 10 7 211 

Correlational 0.519 0.015 0.067 99 160 20 318 

Individual 0.008 0.001 0.000 95 20 11 125 

Area 0.414 0.010 0.037 99 128 13 404 

Homicide 0.298 0.025 0.048 95 19 8 93 

Violent Crime 0.290 0.008 0.018 99 75 18 328 

Non-Violent Crime 0.503 0.043 0.140 99 142 15 80 

Total Crime 0.077 0.003 0.001 99 152 11 119 

North America 0.243 0.007 0.012 98 61 19 373 

Europe 0.069 0.003 0.001 100 201 2 85 

Australasia 0.507 0.094 0.357 99 149 4 41 

Direct Lead Measure = TRUE 0.092 0.026 0.031 95 19 9 54 

Direct Lead Measure = FALSE 0.190 0.003 0.002 99 121 15 475 

Representative Estimate = 

TRUE 

0.195 0.021 0.007 98 54 24 24 

Representative Estimate = 

FALSE 

0.184 0.003 0.002 99 114 24 505 

Control Gender = TRUE 0.007 0.001 0.000 95 20 8 103 

Control Gender = FALSE 0.382 0.007 0.018 99 127 18 426 

Control Race = TRUE 0.134 0.010 0.008 97 34 13 104 

Control Race = FALSE 0.192 0.003 0.002 99 129 14 425 

Control Income = TRUE 0.028 0.002 0.000 97 31 13 174 

Control Income = FALSE 0.433 0.008 0.017 99 145 16 355 

Control Education = TRUE 0.006 0.001 0.000 95 19 11 106 

Control Education = FALSE 0.372 0.007 0.016 99 128 17 423 

        

 

Notes. RE Estimate is a random effects, meta-analysis estimate computed using DerSimonian-Laird (1986) 

method. SE is the standard error. τ2, 𝐼2, and �̂�2 are estimates of between-study heterogeneity. See section 
4.2 for more details.  
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Table III – Bias and average effect estimates 

 

Variable FAT-PET FAT-PEESE Multi-level FAT-PET 

�̂�𝐹  5.087 

(1.291) 

32.479 

(8.474) 

3.562 

(0.880) 

 

𝜃 -0.003 

(0.002) 

0.005 

(0.002) 

0.005 

(0.004) 

 

Notes. Estimates presented with their standard errors in brackets. FAT-PET is Funnel Asymmetry test and 

Precision Effect Test. FAT-PEESE is Funnel Asymmetry Test and Precision Effect Estimate with Standard 

Error. The multi-level FAT-PET is a mixed effects-multi-level model with a different slope coefficient for 

each study. �̂�𝐹  is the estimate of bias in a meta-analysis sample. 𝜃 is the estimate of the “true” average 

effect size accounting for the estimated bias �̂�𝐹 .  
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Table IV – Estimated Meta-average and relative publication 

probabilities using Andrews-Kasy method 

 

Meta-average Relative publication probabilities, where  

reference p(𝟏. 𝟗𝟔 ≤ 𝒁) is 1 

𝜽 𝒁 <  −𝟏. 𝟗𝟔  −𝟏. 𝟗𝟔 ≤ 𝒁 < 𝟎  𝟎 ≤ 𝒁 <  𝟏. 𝟗𝟔  

-0.642 0.005 0.321 1.505 

(0.428) (0.007) (0.148) (0.799) 

 

Notes. Table shows results from Andrews-Kasy (2019) method with standard errors in brackets. 𝜃 is the 

estimate of the “true” average effect size accounting for the estimated publication bias. The right three 

columns give the estimated publication probability relative to a positive estimate that is significant at the 

95% confidence level. Z is the Z score (estimate divided by standard error). The publication probabilities 

are estimated for Z scores between the shown cut-offs.  
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Table V – Descriptive statistics of MRA covariates 

Name Mean Standard Deviation 

Control_gender 0.19 0.40 

Control_race 0.20 0.40 

Control_income 0.33 0.47 

Control_education 0.20 0.40 

Homicide 0.18 0.38 

Violent 0.62 0.49 

Non_Violent 0.15 0.36 

Both 0.22 0.42 

Area 0.76 0.43 

OLS 0.40 0.49 

ML 0.14 0.35 

Odds_Ratio 0.03 0.17 

Panel 0.67 0.47 

Addressing 

Endogeneity 

0.40 0.49 

North America 0.71 0.46 

Europe 0.16 0.37 

Australasia 0.08 0.27 

Direct Lead Measure 0.10 0.30 

Number of 

Covariates* 
0.00 1.00 

Sample Size* 0.00 1.00 

 

Notes. See section 4.3 for description of variables.  

* indicates variables have been standardised. 
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Table VI – Variables used in combinations for each sample 

estimation 

Variables used Estimation 
Control gender, Control race, Control income, 
Control education, Homicide, Violent, Non-
Violent, Area dummy, OLS, ML, Odds Ratio, 
Panel dummy, Addressing Endogeneity, North 
America, Europe, Australasia, Direct Lead 
Measure, Covariates, Sample Size 

Full Sample 

Control gender, Control race, Control income, 
Homicide, Violent, Non-Violent, Area dummy, 
OLS, ML, Panel dummy, North America, Direct 
Lead Measure, Covariates, Sample Size 

Addressing Endogeneity Sample 

Control gender, Control race, Control income, 
Control education, Homicide, Violent, Non-
Violent, Area dummy, OLS, ML, Odds Ratio, 
Panel dummy, North America, Europe, 
Australasia, Direct Lead Measure, Covariates, 
Sample Size 

Correlational Sample 

Control race, Control income, Control 
education, Homicide, Violent, Non-Violent, OLS, 
ML, Panel dummy, Addressing Endogeneity, 
North America, Europe, Australasia, Direct Lead 
Measure, Covariates, Sample Size 

Area Sample 

Control gender, Control race, Control income, 
Control education, Homicide, Violent, Non-
Violent, OLS, ML, Odds Ratio, Panel dummy, 
Addressing Endogeneity, North America, 
Europe, Australasia, Direct Lead Measure, 
Covariates, Sample Size 

Individual Sample 

Control race, Control income, Control 
education, Area dummy, OLS, ML, Panel 
dummy, Addressing Endogeneity, North 
America, Europe, Australasia, Covariates, 
Sample Size 

Homicide Sample 

Control gender, Control race, Control income, 
Control education, Area dummy, OLS, ML, Odds 
Ratio, Panel dummy, Addressing Endogeneity, 
North America, Europe, Australasia, Direct Lead 
Measure, Covariates, Sample Size 

Violent Crime Sample 

 

Notes. Table shows which covariates were included for each sub-sample estimation. Inclusion depended 

on whether there was variation in the covariate for that subsample.  
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Table VII – Estimates of the coefficients on covariates included in 

meta-regression analysis  

 

Variable Mean Median 
Standard 

Deviation 
FAT 1.22 1.16 1.41 

Precision 0.20 0.17 0.15 

Control_gender 0.01 0.01 0.03 

Control_race -0.05 -0.05 0.03 

Control_income 0.01 0.00 0.03 

Control_education -0.01 -0.01 0.01 

Homicide -0.05 -0.05 0.01 

Violent 0.01 0.01 0.03 

Non_Violent -0.01 -0.01 0.03 

Area_dummy 0.20 0.17 0.12 

OLS -0.09 -0.08 0.08 

ML 0.00 0.02 0.08 

Odds_Ratio -0.22 -0.22 0.11 

Panel_dummy -0.12 -0.09 0.16 
Addressing 
Endogeneity -0.02 -0.02 0.02 

North_America -0.28 -0.29 0.11 

Europe 0.04 0.02 0.18 

Australasia 0.09 0.10 0.09 

Direct_Lead_Measure -0.03 -0.02 0.12 

*Covariates -0.10 -0.11 0.04 

*Sample Size 0.00 0.00 0.00 
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Table VIII – Meta-analysis average estimates for the full sample 

and each subsample 

Sample averages     

Sample Mean Median SD N % < −𝟏 𝒐𝒓 > 𝟏 

Full Sample 0.11 0.12 0.06 524288 0% 

Addressing Endogeneity Sample 0.01 0.01 0.01 16384 0% 

Correlational Sample 0.28 0.27 0.10 262144 0% 

Area Sample 0.26 0.27 0.07 65536 0% 

Individual Sample 0.02 0.02 0.03 262144 0% 

Homicide Sample 0.72 0.74 0.21 8192 5% 

Violent Crime Sample 0.29 0.23 0.19 65536 0% 

Non-violent Crime Sample 0.76 0.74 0.24 65536 15% 

      

 

“Ideal” specification 

Sample Mean Median SD N % < −𝟏  𝒐𝒓  > 𝟏 

Full Sample -0.05 -0.02 0.16 524288 0% 

Addressing Endogeneity Sample -96.52 0.02 299.66 16384 13% 

Correlational Sample 0.19 0.19 0.33 262144 1% 

Area Sample 0.39 0.33 0.37 65536 6% 

Individual Sample 0.04 0.02 0.15 262144 0% 

Homicide Sample 7.70 2.15 11.41 8192 66% 

Violent Crime Sample 0.13 0.01 0.72 65536 19% 

Non-violent Crime Sample 0.63 0.43 2.37 65536 57% 

      

 

Notes. Table shows results from combining multiple meta-regression estimates, each using different 

specifications. All regressions carried out by restricted maximum likelihood. This is done for the full 

sample and subsamples. N is the number of regressions carried out, each a different specification. The 

mean and median are the summary statistics of the average effect size from these regressions, given in 

Partial Correlation Coefficients (PCCs). PCCs are bounded between -1 and 1. The last column gives the 

percent of PETs which fall outside this range. 

 

 

 



56 
 
 

Table IX – Descriptive statistics of data used for elasticity 

estimation 

 

Variable Mean Standard Deviation 

   

Median blood lead level for children ages 1-

5 in US 

3.39 4.42 

US Homicide rate 6.98 1.81 

 

Sources. NHANES data for blood lead and FBI uniform crime reports for the homicide data. 
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A. Converting to common estimates 

To conduct a meta-analysis all estimates must be converted to a common metric. We 

calculate the partial correlation coefficient (PCC) as shown in equation (I): 

(I) 𝑃𝐶𝐶𝑖𝑗 =
𝑡𝑖𝑗

√𝑡𝑖𝑗+𝑑𝑓𝑖𝑗
2

 

Where 𝑡𝑖𝑗  is the t-ratio for estimate i of study j, and 𝑑𝑓𝑖𝑗  is the degrees of freedom. The 

standard error of each PCC is calculated according to equation (II): 

(II)  𝑆𝐸𝑖𝑗 =
𝑃𝐶𝐶𝑖𝑗

𝑡𝑖𝑗
 

Some papers reported odds ratios rather than correlation coefficients. Following 

Polanin and Snilstveit (2016), we converted these to PCCs. 

(III)  𝑃𝐶𝐶𝑖𝑗 =  
𝑙𝑛(𝑂𝑅𝑖𝑗)×(

√3

𝜋
)

√(ln(𝑂𝑅𝑖𝑗)×(
√3

𝜋
))

2

+ 𝑎𝑖𝑗 

 

Where 𝑂𝑅𝑖𝑗  is the odds ratio i for study j and 𝑎𝑖𝑗 =
(𝑛𝑖𝑗1+𝑛𝑖𝑗2)

2

𝑛𝑖𝑗1𝑛𝑖𝑗2
. Here 𝑎𝑖𝑗 is a correction 

factor which depends on the sample size in the control and treatment groups (𝑛𝑖𝑗1 and 

𝑛𝑖𝑗2). If the sample sizes are unknown, or there are no treatment and control groups, we 

follow Borenstein et al. (2009) and set them to be equal, which gives 𝑎 = 4.  

In a similar way we calculate standard error equivalents for odds ratio estimates.  

Following the Cochrane Handbook (Higgins and Green, 2011), first I convert the 95% 

confidence intervals to odds ratio standard errors (ORSE). 
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(IV) 𝑂𝑅𝑆𝐸𝑖𝑗 =   
(ln(𝐶𝐼̅̅ ̅)− ln(𝐶𝐼))

3.92
 

Where 𝐶𝐼̅̅ ̅ is the upper confidence interval limit and 𝐶𝐼 is the lower confidence interval 

limit. I then convert this into partial correlation coefficient standard errors. 

(V) 𝑆𝐸𝑖𝑗 =
√

(𝑎2×𝑂𝑅𝑆𝐸𝑖𝑗
2 ×(

3

𝜋2)

((log(𝑂𝑅𝑖𝑗)×(
√3

𝜋
))

2

+ 𝑎)

3 

Only one study (Billings and Schnepel, 2018) has estimates which are similar to 

randomised control trial estimates, with a mean difference shown between control and 

treatment groups.  These can also be converted to PCCs. For these we follow Borenstein 

et al. (2009) and first compute the within-groups standard deviation 𝑆𝐷𝑖𝑗for estimate i 

of study j, as shown in (VI). 

(VI) 𝑆𝐷𝑖𝑗 = √
(𝑛𝑖𝑗1−1)×𝑆𝑖𝑗1

2 +(𝑛𝑖𝑗2−1)×𝑆𝑖𝑗2
2

𝑛𝑖𝑗1+𝑛𝑖𝑗2−2 
 

Here, 𝑛𝑖𝑗1 is the sample size for the control group for i of study j, 𝑆𝑖𝑗1 is the standard 

deviation for the control group, while 𝑛𝑖𝑗2 and 𝑆𝑖𝑗2 are the same from the treatment 

group. 

We use this to calculate Cohen’s D: 

(VII) 𝐷𝑖𝑗  =  
�̅�𝑖𝑗1− �̅�𝑖𝑗2

𝑆𝐷𝑖𝑗
 

Where �̅�𝑖𝑗1 is the sample mean for the control group and �̅�𝑖𝑗2 for the treatment group. 

Finally, we convert Cohen’s D to a PCC by equation (VIII). 
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(VIII) 𝑃𝐶𝐶𝑖𝑗 =
𝐷𝑖𝑗

√𝐷𝑖𝑗
2 +𝑎𝑖𝑗

 

Here 𝑎𝑖𝑗 is the same as that for equation (III) except we have the sample sizes for each 

group so we do not set it to equal 4. The variance for Cohen’s D is calculated as in (IX). 

(IX) 𝐷𝑉𝑎𝑟𝑖𝑗 =  
𝑛𝑖𝑗1+𝑛𝑖𝑗2

𝑛𝑖𝑗1×𝑛𝑖𝑗2
+  

𝐷𝑖𝑗
2

2(𝑛𝑖𝑗1+𝑛𝑖𝑗2)
 

This is then used to calculate the standard error of the PCC. 

(X) 𝑆𝐸𝑖𝑗 = √
𝑎𝑖𝑗

2 ×𝐷𝑉𝑎𝑟𝑖𝑗

(𝐷𝑖𝑗
2 +𝑎𝑖𝑗)

3  

One further study only uses simple correlations (Lauritsen et al., 2016).  The standard 

errors for these must be approximated. We use the approximation of one divided by n-3 

for the correlation standard errors, as n is the same for all estimates, the standard 

errors are the same for all these estimates. 
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B. Common effects and random effects meta-analysis  

This section explains how common and random efffects meta-analysis estimates are 

calculated.  

Before calculating fixed or random effects meta-averages, first we convert all PCCs to 

normalised estimates with equation (XI), so that correct confidence intervals can be 

calculated. 

(XI) 𝑍𝑖𝑗 = 0.5 𝑙𝑛 (
1+𝑃𝐶𝐶𝑖𝑗

1−𝑃𝐶𝐶𝑖𝑗
)  

Where 𝑍𝑖𝑗  is the normalised effect size of a PCC. The process is that first PCCs are 

converted to normalised estimates, we estimate using either common effects or random 

effects, then the estimates are converted back to a PCC with equation (XII). 

(XII) 𝑃𝐶𝐶 =
𝑒2𝑧−1

𝑒2𝑧+1
   

Where in this case the PCC is the meta-analysis estimate as a correlation coefficient, and 

Z is the estimate obtained from the normalised PCCs. 

To calculate the common effects averages we weight each estimate by the inverse of the 

variance, and then divide the sum of these weighted estimates by the sum of the weights 

as shown in following two equations: 

(XIII) 𝑊𝑖𝑗 =
1

𝑉𝑖𝑗
 

(XIV) 𝐹𝐸 =
∑ 𝑊𝑖𝑗𝑍𝑖𝑗

𝑁
𝑖=1

∑ 𝑊𝑖𝑗
𝑁
𝑖=1
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Where 𝑉𝑖𝑗 is the variance of estimate 𝑖 of study 𝑗 , 𝐹𝐸 is the fixed effects average, and 𝑍𝑖𝑗  

is normalised PCC. This average is converted back into a PCC by equation (XII). Along 

with the averages I calculate 95% confidence intervals, first by obtaining the standard 

errors of 𝐹𝐸. 

(XV) 𝑆𝐸𝐹𝐸 = √
1

∑ 𝑊𝑖𝑗
𝑘
𝑖=1

 

Then obtaining lower and upper limits in the normal fashion. The fixed effect averages 

and standard error can be used to calculate Z-scores for hypothesis testing as normal. 

Random effects meta-averages are estimated in the same way as fixed effects, except we 

replace 𝑉𝑖𝑗 in equation (XIII) with 𝑉𝑖𝑗
∗ .  Where 𝑉𝑖𝑗

∗ =  𝑉𝑖𝑗 + 𝑇2, and 𝑇2 is an estimate of the 

between-study variation. There are different methods of estimating 𝑇2, we use the 

DerSimonian-Laird (1986) method.  
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C. Review of literature used in meta-analysis 
 

There are 24 total studies included in this meta-analysis.  The studies use different 

methods to examine the lead-crime relationship. Longitudinal studies, which track the 

same people over time, are common. Fergusson, Boden and Horwood (2008) use a 

longitudinal sample and find a positive association between dentine lead levels at 6-9 

years of age and later offending while including race and family socioeconomic status 

covariates. However, the effect was smaller once variation in education grades was 

added. They reasoned that the effect of lead was in reducing education outcomes, leading 

to more crime. Overall, they find that lead only explains 1% of the variation in crime. 

Nkomo et al. (2017) used a longitudinal sample in South Africa and found a positive 

association between blood lead levels at age 13 and violent crime in later life. Beckley et 

al. (2018) find only a small positive effect of childhood lead levels and both violent and 

non-violent crime in their longitudinal sample of New Zealand residents. They conclude 

other factors are much more important for determining crime rates. Finally, Sampson and 

Winter (2018) follow a longitudinal sample in Chicago and find school age lead levels are 

not associated with an increase in arrests in later life.  Overall, longitudinal studies show 

a mixed picture, both on whether there is an effect and whether it is a strong one. 

A different strand of research looks at the correlation of lead levels and crime across time 

and areas, rather than at an individual level. Three studies look at time series of lagged 

lead levels and crime for the US. Nevin (2000) finds a positive effect, but McCall and Land 

(2004) find no effect on the age cohorts most affected in youth by the increase in leaded 

gasoline. They reason that increased lead levels at one time should only affect the crime 

rates of that cohort, not earlier cohorts, and so only look at crime rates for those certain 

age ranges. Lauritsen, Rezey, and Heimer (2016) look at two different data series of 
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crime: the National Crime Victimization Survey (NCVS) and the Uniform Crime Reports 

(UCR). They find that lead is positively correlated with violent crime in the UCR but not 

the NCVS, which they consider a better measure of violent crime. However, they consider 

both data sources equally valid for property crime. Stretesky and Lynch (2004) find a 

strong effect when looking across US countries for both property and violent crime using 

the UCR. Mielke and Zahran (2012) find a strong effect across six US cities, Lersch and 

Hart (2014) find the same looking at Florida census tracts. Both Barrett (2017) and 

Manduca and Sampson (2019) find a strong positive relationship in census tracts in 

Chicago using different methods. Looking outside the US, Taylor et al. (2018) find positive 

results for violent crime in Australia, and across six suburbs in New South Wales.  Nevin 

(2007) estimates the relationship for many OECD countries and finds pre-school blood 

levels are strongly associated with a whole range of violent and non-violent crime. On the 

whole, studies which look at geographic areas as the unit of interest tend to find the 

strongest positive associations between lead and crime.  

The final strand of the literature are those studies that attempt to identify a casual effect 

while accounting for endogeneity from unobserved variables correlated with both crime 

and lead. These could bias the estimate of the effect of lead on crime. Lead exposure is 

correlated with poverty (Baghurst e al. 1999) and race (Sampson and Winter, 2016) and 

likely with other, unobservable, variables. We cannot rule out that these variables may 

cause individuals to commit more crime and be more exposed to lead, rather than lead 

being the cause. Even panel data designs with controls may not account for this 

endogeneity. The endogeneity threat has led to some, more recent, studies using quasi-

experimental methods. Needleman (2002) carried out a “case control” study where 

young offenders were matched to a “control” group chosen for similar observable 

characteristics. The offender group was found to have higher bone lead levels.  Although 
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this this is an improvement beyond looking at correlation alone, the likelihood of 

unobservable group differences means that the problem of endogeneity was not 

adequately resolved.  

Reyes (2007) is the first study to use quasi-experimental methods to derive a causal 

estimate. She uses the different grades and concentration of lead in gasoline in US states 

as an instrumental variable for lead levels. She finds an effect of lead on violent crime but 

not property crime.  In a later paper (2015) she uses a similar identification strategy with 

individual-level data. Here she finds a positive effect on both property and violent crime. 

Feigenbaum and Muller (2016) also use an instrumental variable strategy. They 

instrument for the presence of lead water pipes in US cities using the distance to the 

nearest lead refinery in 1899, a period in which thousands of US cities built their water 

supplies. They find a positive causal effect on homicides in 1921-1936. Aizer and Currie 

(2018) use nearby traffic volume interacted with year of birth as an instrument for lead 

and include sibling fixed effects.  They find a positive relationship between lead and 

incarceration. Curci and Masera (2018) also find a positive association when they look 

across 300 US cities. Most of the estimates from this paper do not fall under the 

“addressing endogeneity” category, but in one chart of estimates they use soil quality as 

an instrument for lead.  Grönqvist et al. (2019) use a sample of 800,000 Swedish children 

grouped by neighbourhoods and cohorts. They instrument for blood lead levels by the 

lead measured in moss in the areas. The estimates are mixed but tend to show a small 

positive effect on crime.  Finally, Billings and Schnepel (2018) match a treatment group 

of children who had blood lead levels above a 10μg/dL threshold in two tests, with a 

control group of children who were above the threshold in the first test and just below in 

the second test, thus failing to qualify for treatment. This, close to randomised control 

trial, study finds a positive effect of lead on crime, with a stronger effect on property crime 
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than violent crime. Overall, the few studies that use quasi-experimental methods all find 

a positive effect on crime, but they tend to find a smaller effect than the studies that look 

at correlations across geographic areas.  
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D. Publication Bias Using Only Representative Estimates 
 

In section 4.3 we test for publication bias using all estimates. Here we repeat the 

exercise using only the representative estimates. However, we cannot estimate the 

hierarchical model, or cluster errors as we only have one estimate per study.  

 

Table D.1 – Bias and average effect estimates using representative 

estimates 

 

Variable FAT-PET FAT-PEESE 

�̂�𝐹  3.714 

(0.892) 

12.049 

(9.070) 

𝜃 -0.001 

(0.005) 

0.006 

(0.006) 

 

Notes. Estimates presented with their standard errors in brackets. FAT-PET is Funnel Asymmetry test and 

Precision Effect Test. FAT-PEESE is Funnel Asymmetry Test and Precision Effect Estimate with Standard 

Error. The multi-level FAT-PET is a mixed effects-multi-level model with a different slope coefficient for 

each study. �̂�𝐹  is the estimate of bias in a meta-analysis sample. 𝜃 is the estimate of the “true” average 

effect size accounting for the estimated bias �̂�𝐹 .  
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E. Bayesian Model Averaging  

As a robustness check we carry out Bayesian model averaging with all variables used in 

our meta-regression analysis. We estimate a normal-gamma conjugate model with a 

uniform model prior and unit information g-prior. These are the same as in Bajzik et al. 

(2019), see there for more information. The results are given below. 

Table E.1 – Posterior results from Bayesian model averaging 

Variable 
Posterior 

Mean 
Posterior Standard 

Deviation 
Posterior Inclusion 

Probability 

Precision 0.33 0.03 1.00 

Homicide -0.01 0.02 0.15 

Violent 0.00 0.01 0.08 

Non_Violent 0.00 0.01 0.11 

Odds_Ratio -0.12 0.09 0.75 

ML 0.12 0.02 1.00 

Panel dummy -0.16 0.03 1.00 
Addressing 
Endogeneity 0.00 0.00 0.05 

Area dummy 0.18 0.02 1.00 

Covariates -0.07 0.01 1.00 

Sample Size 0.00 0.00 0.10 

North_America -0.43 0.03 1.00 

Europe 0.01 0.03 0.11 

Australasia -0.01 0.03 0.11 

Control_gender 0.00 0.01 0.12 

Control_race -0.04 0.02 0.89 

Control_income 0.00 0.01 0.09 

Control_education 0.00 0.00 0.07 

OLS 0.10 0.02 1.00 

Direct Lead Measure -0.39 0.04 1.00 

FAT 3.88 NA 1.00 

 

 

We evaluate the posterior means at the sample averages for each variable (excluding 

the FAT as normal). This gives a point estimate PCC of 0.06. 
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