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Access to green spaces can improve mental well-being, but which char-
acteristics of green space drive this is poorly understood. One poten-
tially important attribute is the natural soundscape. Prior research links
short-term mental well-being outcomes to soundscapes associated with
green space, such as birdsong, but less is known about longer term ef-
fects. We provide the first causal estimates of the longer-term mental
well-being effects of natural soundscapes using a pre-registered analysis
plan. We use a unique dataset combining granular acoustic data across
Great Britain with panel survey data on mental well-being. Exploiting
plausibly exogenous seasonal changes in birdsong and a difference-in-
differences design, we find precise null effects on mental well-being. Our
results suggest that increased exposure to natural soundscapes may be
less beneficial for long-term outcomes than short-term. Our findings
contribute to the literature on the mental health impacts of natural en-
vironments and highlight the need to identify which specific green space
attributes drive well-being improvements.

JEL: Q57; I31
Keywords: Ecological Economics; Ecosystem Services; Happiness,
Well-Being

I. Introduction

Depression and anxiety have increased sharply among young people in many coun-
tries over the last decade (Blanchflower et al., 2024), with some suggesting this is due
to smartphones and social media (Burn-Murdoch, John, 2023). Nature has long been
viewed as a source of stress reduction and restoration, and many studies have reported
these positive effects (Twohig-Bennett and Jones (2018)), but a consistent finding in re-
views of the literature is that we know little about which specific features of natural
environments drive these effects and which causal pathways from green space to mental
health are the most important (Markevych et al. (2017), Frumkin et al. (2017), Hartig
et al. (2014)). Furthermore, in a review of 215 studies Marselle et al. (2019) found
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that while there was a wealth of evidence indicating green space was good for mental
well-being, almost all studies were for short-term exposure, short-term mental health
outcomes.

We therefore use a longer-term measure of mental well-being and focus on a single char-
acteristic of green spaces: the natural sounds, or soundscape. In particular, birdsong. In
temperate regions, birdsong is the main contributor to diurnal natural soundscapes. A
wealth of qualitative studies indicate people find natural sounds, particularly birdsong,
pleasant (see Ratcliffe (2021) for a review). In one meta-analysis, birdsong had the
highest effect on short-term stress reduction of all natural sounds (Buxton et al. (2021)).
Recent systematic reviews have also shown that many quantitative studies find birdsong
is beneficial, at least in the short-term, across a range of psychological outcomes (Aletta,
Oberman and Kang (2018); Ratcliffe (2021); Beute et al. (2023)).

Our contribution is to provide novel, causal, estimates of the longer-term impact of one
aspect of green space, natural soundscapes, on mental well-being using a pre-registered
analysis plan. Our study combines new and unique acoustic data at a granular level
across Great Britain with survey data on self-reported mental well-being. We use a data
source of local soundscapes for every part of Great Britain in both winter and spring,
since we know that bird populations vary between these two periods (in terms of which
species are typically present in any location), and their vocal activity also changes. In a
two-wave online panel survey of 727 British households, respondents gave mental well-
being scores (using the WHO5 index) in both winter and spring. They also gave us
location data. This allowed us to combine the survey and soundscapes data to analyse
how local soundscapes affect mental well-being scores. We argue that measuring mental
well-being over two different seasons, and using simulated natural soundscapes around
each respondent’s residence, allows us to explore the longer term effects of soundscapes
on well-being, in contrast to most studies which measure short-run effects (e.g. through
playing sounds to respondents in a lab). Finally, in order to get a causal estimate of the
effect of natural soundscapes we use up-to-date methods for difference-in-differences
with continuous data (de Chaisemartin, D’Haultfœuille and Vazquez-Bare, 2024).

II. Theoretical Background

There are two main theories in the psychological literature that detail how natural sounds
can influence mental well-being. These are Stress Reduction Theory (SRT, Ulrich (1983))
and Attention Restoration Theory (ART, Kaplan and Kaplan (1989)). ART deals with re-
ducing fatigue and restoring attention and concentration to cognitively demanding tasks.
While an important mechanism, we believe for longer term mental outcomes such as
those we measure, SRT is more pertinent. SRT holds that experiences with natural sound
can restore mental well-being and reduce longer term stress. This comes about through
attached meanings and memories associated with the sounds (Ratcliffe, Gatersleben and
Sowden, 2016). This mechanism may be mediated by other elements in the soundscape,
which could interfere with this semantic connection. Uebel et al. (2021) conducted a lab
experiment with 162 participants in Australia and found that perceived restorativeness
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increases with bird species richness, but the effect is lowered as traffic volume increases
(see also Uebel et al. (2025b) and Uebel et al. (2025a)).

We expect any long-term effect of birdsong to be primarily through the SRT mechanism.
If birdsong does reduce stress then we would expect that increased, cumulative expo-
sure would lead to higher mental well-being outcomes. Although we cannot distinguish
between the two mechanisms in our study.

III. Results

The treatment is the change in soundscape metric between winter and spring. The three
treatment variables we use are explained in more detail in section V, but we also sum-
marise them here:

• Acoustic Complexity Index: This is a measure of the variation in acoustic inten-
sity. Birdsong will tend to produce higher values of the ACI, whereas constant
noise produces low values. We expect there to be a positive relationship between
this variable and mental well-being, but perhaps with diminishing marginal effects
at higher values.

• Bioacoustic Index: High values of this index occur when there is a large disparity
in volume between the quietest and loudest parts of a recording. Therefore in-
creases in this index tend to be associated with increases in bird vocalizations or
bird species richness. We expect there to be a positive relationship between this
variable and mental well-being, but perhaps with diminishing marginal effects at
higher values.

• Acoustic Entropy: High values can either mean extremely noisy soundscapes or
very quiet soundscapes. Low values mean that noise is concentrated in a small
band of frequencies. We expect that mental well-being will initially increase as
acoustic entropy increases, as more birdsong is heard from more individuals, but
this relationship will reverse at higher values of entropy. This is because some
birdsong is preferred to complete silence.

In figure 1 we see the change in each soundscape variable between winter and spring.
Each acoustic metric has a different pattern of change. The bioacoustic index shows
increases across highland areas but decreases across more lowland areas. This likely
picks up the migration of larger winter birds such as geese, which will winter in Britain,
before heading north in spring, and have loud calls. The acoustic complexity index, in
contrast, is more sensitive to birdsong, rather than all bird vocalizations, and so tends
to show increases across all of Britain, and this is highest in highland areas. Acoustic
entropy also tends to show increases but there is far less variation than in the other two
indices. In fact many areas show almost no change at all. This may show that entropy is
less sensitive to change in bird species vocalization between winter and spring.
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FIGURE 1. CHANGE BETWEEN WINTER AND SPRING IN ACOUSTIC INDICES

Note: Areas with no data are grey. Variables are pseudo-log transformed before plotting.



5

A. Baseline Correlations

Before our main, pre-registered results, we check if there is a simple correlation between
our treatment and outcome variable. In figure 2, we include a heat map of our dependent
variable, the change in WHO5 mental well-being score, against the change in each of the
three acoustic variables. We can see for all three acoustic variables that there appears to
be little to no relationship between their change and the change mental well-being score.
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B. Main Results

Our main results use a difference-in-differences design estimated with the two step
method in de Chaisemartin, D’Haultfœuille and Vazquez-Bare (2024).

Table 1 and figure 3 show the estimates from this process. We first regress without co-
variates and then with for each of the three treatment variables. Our θ̂ is an estimate of
the Weighted Average of Switchers’ Slopes (WAOSS) which is analogous to the Aver-
age Effect of Treatment on the Treated (ATT), but used in settings where there are no
untreated units and treatment is continuous (de Chaisemartin et al., 2022).

In all cases, the θ̂ estimates are not statistically significant. The ACI and BIO estimates
are extremely precise null results. Acoustic entropy (H) gives implausibly large point
estimates with extremely wide intervals. We believe this is due to the lack of variation
in H, but we include it as it was part of our pre-analysis plan. The p-value column
shows p-values for a one-tailed test of θ̂ ≥ 0, as specified in our pre-analysis plan. As a
sense check of the power of our estimates, we present a column showing the estimated
minimal detectable effect (MDE) following Rainey (2024). For our one-tailed test this
is calculated as 2.5×SE. Here we confirm that we could detect very small changes for
ACI and BIO, but not for H.

TABLE 1—EFFECT OF ACOUSTIC CHANGES ON WHO5 SCORE

Variable θ̂ SE Z-score P-Value MDE N

ACI, No Covariates 0.00 (0.01) -0.04 0.51 0.03 727
ACI, With Covariates -0.03 (0.02) -1.58 0.94 0.05 727
BIO, No Covariates -0.06 (0.08) -0.78 0.78 0.2 727
BIO, With Covariates -0.01 (0.10) -0.08 0.53 0.25 727
H No Covariates 10.64 (45.02) 0.24 0.41 113 727
H With Covariates 22.39 (56.29) 0.40 0.35 140 727

Notes: ACI = Acoustic Complexity Index.
Bio = Bioacoustic Index.
H = Entropy. SE = standard error. θ̂ is the WAOSS estimate (see section IV)
MDE is minimal detectable effect, calculated as 2.5*SE.
P-value shows one-tailed p-values.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Overall, our results do not provide evidence that birdsong affects longer term mental
well-being.

C. Robustness Checks

In the appendix, we carry out a number of robustness results. These include additional
estimates of the WAOSS including covariates we did not pre-specify, such as the northing
and easting of where our survey respondents live. We estimate with more fine-grained
soundscape data, which reduces our sample, but may be more representative of teh actual
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FIGURE 3. EFFECT OF ACOUSTIC CHANGES ON WHO5 SCORE

local soundscape for each individual. We also subset to a rural only sample. We look
at only people who moved between wave 1 and wave 2, to see if the movement to a
higher acoustic metric area has any effect. In all cases, our results are similar to our main
results.

IV. Discussion

Evidence from environmental psychology suggests green space is beneficial to mental
well-being, but less is known about which aspects of green space are most important, or
the causal pathways involved. Previous work has shown exposure to bird song can have
positive effects on short-term mental well-being. In order to investigate the effects of one
aspect of greenspace, the soundscape, on longer-term mental well-being outcomes, we
used a panel survey of 727 respondents in Great Britain who self-report an index of men-
tal health, combined with a new, unique data set of local soundscapes, to estimate these
effects for a sample of respondents in Great Britain. We used this data in a difference-in-
differences design, according to a pre-registered analysis plan, to estimate a casual effect
of natural soundscapes on mental well-being.

We did not find evidence of a causal effect for any of the three acoustic indices we use
on self-reported mental well-being. Our results suggest that, while previous research
indicates that short-term exposure to birdsong positively affects short-term mental well-
being, it may not affect long-term mental well-being. Note that our study only inves-
tigates one facet of natural soundscapes. There are many ways birdsong and natural
soundscapes can be valued by people beyond the effects on mental well-being.

The implications of our study are that other attributes of green space may be more im-
portant than the soundscape for mental well-being, or that attributes must be present in
combinations. We suggest future research continues to examine the different attributes
of green space to see which are most beneficial, and moves beyond short-term exposure,
short-term outcome settings.
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V. Data and Methods

Our design combines two sources of data: a panel survey for the outcome and control
variables, combined with acoustic indices from simulated soundscapes calculated from
UK Bird Atlas data (Balmer et al., 2013) for the treatment variables.

A. Treatment Variables

We use three, related treatment variables to represent birdsong. All three are acoustic
indices taken from modelled soundscapes. These soundscapes use UK Bird Atlas data
combined with sound files from Xeno Canto www.xeno-canto.org.

Species presence and abundance data come from the UK Bird Atlas 2007–11 (Balmer
et al., 2013), which used around 40,000 expert volunteers to sample 2km × 2km tetrads
in both winter and breeding seasons over 4 years. All bird visual and auditory detections
were recorded and the species noted. This gave a detailed survey of both species presence
and abundance for 216 million invidual birds and 520 species1.

For each species and site, we used the maximum seasonal count and converted this to
individuals per km². These were adjusted using species-specific aural detectability esti-
mates from BBS data (2014–2019), ensuring that only likely vocalizing individuals were
included.

Species-specific recordings were sourced from Xeno-Canto. The Xeno Canto site has
around 900,000 recordings of bird vocalisations from all over the world. We selected
only high-quality files from the site (Quality A) under 60 minutes, with vocalization
types matched to season. Each soundscape was built by probabilistically selecting and
inserting recordings into a 60-second audio file, using randomised timing and volume to
simulate distance. Sound files were bandpass filtered (300–12,000 Hz) and standardised
in format. Species with no available recordings (0.003% of records) were dropped.

We created a 60-second sound file initially containing only low-volume (vol 0.0005)
white noise, which we populated with species recordings determined by the site-season
densities. For each Atlas record (a species density at a given site in a given season), the
density was probabilistically rounded up or down to an integer count value of individuals.
For each such individual, we then used a second-order application of the BBS-derived
aural detection probability – as visually detected birds may subsequently vocalise – to
determine whether to include it in the final construction. For individuals carried forward
for inclusion, we randomly selected a downloaded recording for the relevant species and
inserted this into the sound file at a starting point randomly drawn from 0 s to 35 s
(allowing all 25-second recordings to complete within the 60-second soundscape). The
volume was randomly determined, drawn from a uniform distribution (Morrison et al.,
2021). The construction process was repeated for each record at a site, thereby overlaying
species into the same soundscape.

1See https://www.bto.org/our-science/projects/birdatlas for more information about the survey.

https://xeno-canto.org/
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As the random elements of the construction process introduce a degree of stochastic-
ity, we repeated this process 50 times for each soundscape. All recordings were in-
serted relative to a calibration tone removed prior to acoustic analysis. All audio pro-
cessing was carried out using the open-source software Sound eXchange (SoX; https:
//sourceforge.net/projects/sox/).

From these soundscapes, three acoustic metrics were measured: Acoustic Complexity In-
dex (ACI), Bioacoustic Index (Bio), and Acoustic entropy (H). These are ”best-practice”
metrics that characterize natural soundscapes over the long term into numeric values,
as described in Abrahams et al. (2023), and we follow their convention. See Ratcliffe,
Gatersleben and Sowden (2016) and Ratcliffe (2021) for more on why we would expect
such variables to positively affect our outcome variable. See Pieretti, Farina and Morri
(2011), Boelman et al. (2007), and Sueur, Aubin and Simonis (2008) for more informa-
tion on each metric.

B. Survey Data

We carried out an online panel survey using a Qualtrics sample frame. It was designed
to be nationally representative for the UK in age, gender and regional distribution. A
pilot was carried out in late 2023, and the first wave of 3394 respondents was sampled
in early 2024, during the winter. The second wave was carried out during peak birdsong
activity in the UK, in early May. A total of 974 respondents from the first wave answered
the second wave, giving an attrition rate of 71% as expected in our pre-analysis plan. Of
these 974, only 727 gave consistent location data for both waves. For some of the re-
spondents who did not give consistent data, they may have moved, but without matching
location data across both waves respondents cannot be linked to a single soundscape for
that period and so were excluded. Our effective sample across both waves then is the 727
remaining.

OUTCOMES VARIABLE

Our outcome variable is the change between winter and spring of an individual’s WHO-
5 Index. This is a set of five questions developed by the World Health Organisation
(WHO) to assess self-reported mental well-being. Responses are on a 6-point Likert
scale ranging from ”All of the Time” to ”Not at All”. Participants are asked to rate,
based on their lived experiences in the last two weeks, the following five questions using
the scale:

1) I have felt cheerful and in good spirits.

2) I have felt calm and relaxed.

3) I have felt active and vigorous.

4) I woke up feeling fresh and rested.

5) My daily life has been filled with things that interest me.

https://sourceforge.net/projects/sox/
https://sourceforge.net/projects/sox/
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The responses are given a score, where ”All of the Time” = 5, and ”Not at All” = 0.
These are summed into an index score with the values 0-25. This is the WHO-5 Index
score for that respondent. The values are normally then multiplied by four but this step
is superfluous and we do not do that.

The WHO-5 index has high validity, sensitivity and specificity as well as being only five
quick and non-invasive questions (Topp et al., 2015). Therefore, we judge it is a suitable
metric for gauging self-reported mental well-being through a survey.

CONTROL VARIABLES

Finally, we include a number of control variables at the level of the individual respondent
in some model specifications. These variables are: income, age, education, self-reported
visits to local green spaces, access to a garden, self-reported visits to other green spaces,
access to private transport, and is the area urban, rural, a village or suburban, as well
as which country/region of the UK they live in. We also include a measure of noise
sensitivity. This is measured using the 5-item test of Benfield et al. (2014), and gives a
score of 0-30, with 30 being the most sensitive to noise. See table ??.

VI. Empirical Framework

Our main hypotheses are that increases in soundscape metrics, represented by our three
acoustic indices, will increase self-reported mental well-being, as measured by the WHO5
questions. The difficulty in measuring this relationship directly, with a selection on ob-
servables strategy, is that this may be insufficient to identify the underlying relationship.
For instance, if people sort into areas of higher or lower soundscape metrics based on
unobservable characteristics, such as preferences, it is possible we would not see any
relationship in a simple, cross-sectional regression.

To illustrate this, see figure 4. This is a causal diagram in the form of a directed acyclic
graph (DAG). This shows our assumed model of the path through which birdsong affects
mental well-being (Y ). We assume that the birdsong actually heard by the people in our
sample is a product of the characteristics of the area (urban/rural, near roads/isolated etc)
and the characteristics of the local bird population (which species, and the abundance
of individual species). These bird characteristics are themselves the result of local area
characteristics (some species prefer wooded areas for example) and the season (different
birds in spring compared to winter). The area characteristics are in turn affected by the
season (e.g. deciduous trees lose their leaves in winter). All of these variables may affect
mental health, Y .

We can see that time (as in the seasonality of birdsong) and the area characteristics (which
are themselves changing with the seasons) if uncontrolled for will open a backdoor path
to our outcome Y . For example, areas with higher levels of birdsong may be better for
mental well-being for other reasons, or people with higher mental well-being may sort
into areas with higher levels of birdsong. Therefore, our research design must take into
account these threats to identification of a causal effect.
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FIGURE 4. DAG MODEL OF THE EFFECT OF BIRDSONG ON MENTAL WELL-BEING

A. Identification Strategy

Our identification strategy relies on the plausibly exogenous change in birdsong between
winter and spring, after conditioning on area characteristics and the time or season.
We cannot separate bird characteristics from birdsong, so our treatment effect is better
thought of as the total effect of birds on mental well-being. To estimate this, following
our pre-analysis plan (Higney et al., 2024), we carry out a difference-in-differences de-
sign. The use of panel data allows us to take into account individual and area fixed effects,
therefore controlling for time-invariant unobserved factors that could impede the cross-
sectional analysis. The time fixed effects allow us to control for area-invariant effects of
moving from winter to spring. Further information about the area is also incorporated
into the design by the use of additional controls, as mentioned in section III.

However, given we have continuous treatment variables (here, treatment is equivalent
to exposure to bird song), and no untreated units (everyone in the sample may hear at
least some bird song), as well as no units who do not change treatment levels (since
bird populations vary between the two sampling periods), we cannot estimate the causal
impact of birdsong on mental well-being using two-way fixed effects. Two-way fixed
effects is not robust to treatment effect heterogeneity, and we may not be able to identify
the effect of treatment (Callaway, Goodman-Bacon and Sant’Anna, 2024). Instead we
will use the method in de Chaisemartin, D’Haultfœuille and Vazquez-Bare (2024). This
allows for treatment heterogeneity, a continuous treatment variable, and, importantly,
no untreated units, or units that do not change treatment. This method relies on the
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existence of ”quasi-stayers”. That is, units who change treatment an arbitrary, small
amount. Within our sample there are areas with far less change in birdsong between
winter and spring than others. For all three acoustic indices the minimum absolute value
of change is less than 0.01 standard deviations. These ”quasi-stayers” show our use of
de Chaisemartin, D’Haultfœuille and Vazquez-Bare (2024) is reasonable, and they allow
us to estimate the counter-factual trend if our assumptions hold.

The crucial assumption is that, conditional on our covariates, units that experience the
same level of treatment in period one, on average would have had the same changes in
outcome but for the change in treatment intensity. This is a parallel trends assumption.

Formally:

(1) E[∆Y (d) | x,D1 = d,D2] = E[∆Y (d) | x,D1 = d], ∀d ∈ D1.

Our main estimand is the weighted average marginal effect of treatment. It is called the
Weighted Average of Switchers’ Slopes (WAOSS). This is the average effect of moving
from the treatment in period one to the treatment in period two, scaled by the average
change in treatment intensity. It is analogous to the Average Treatment on the Treated,
but more suitable for continuous treatment. We estimate the WAOSS by:

(2) θ̂ =
∑

N
i=1 Si(∆Yi −g

λ̂
(D1i,0))

∑
N
i=1 |∆Di|

Where Si is the sign of the change in treatment intensity for unit i (if positive then the
acoustic metric increased and vice versa), ∆Yi is the change in the outcome variable
between the two periods for unit i, |∆Di| is the absolute change in treatment intensity,
and g

λ̂
(D1i,0)) is the imputed counterfactual trend the unit would have experienced if

they had not changed treatment intensity. That is, g
λ̂
(D1i,0)) is the imputed value of

Yit when treatment in period 1 is D1i and there is no change in treatment in period 2.
g

λ̂
(D1,δ )) means treatment in period 1 is D1 and treatment in period 2 is D1 +δ .

For a given level of treatment the function can be separated into the non-treatment change
(trend) and the change due to the change in treatment, given the parallel trend assumption
(de Chaisemartin, D’Haultfœuille and Vazquez-Bare, 2024):
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g(d1,δ ) = E[Y2(d1)−Y1(d1)|x,D1 = d1]︸ ︷︷ ︸
Trend Effect

+δE
[

Y2(d1 +δ )−Y2(d1)

δ

∣∣∣∣x,D1 = d1,∆D = δ

]
︸ ︷︷ ︸

Change in Treatment Effect

(3)

We assume the form of the g
λ̂
(d1,δ ) function with a parametric linear model:

E[Y2(d1)−Y1(d1)|x,D1 = d1] = λ1 +λ2d1 +xiψ1 +d1 ·xiψ2

δE
[

Y2(d1 +δ )−Y2(d1)

δ

∣∣∣∣x,D1 = d1,∆D = δ

]
=

λ3δ +λ4d1 ·δ +λ5δ
2+

δ ·xiψ3 +d1 ·δ ·xiψ4 +δ
2 ·xiψ5

(4)

We will estimate these terms by a regression in the form:

∆Yi = λ1 +λ2d1 +xiψ1 +d1 ·xiψ2+

λ3δ +λ4d1 ·δ +λ5δ
2+

δ ·xiψ3 +d1 ·δ ·xiψ4 +δ
2 ·xiψ5

(5)

Essentially, this is a two-step estimator. First we estimate the regression in (5). The trend
without a change in treatment (i.e. g

λ̂
(D1,0)) is represented by the first four terms in

that equation. In the second step, we use those four terms as the counterfactual trend the
unit would have experienced but for the change in treatment. We plug those values into
equation (3). Given our assumptions, this allows us to plausibly estimate the weighted
average treatment effect of bird song on mental well-being. In all cases we estimate
standard errors with the influence function as in de Chaisemartin, D’Haultfœuille and
Vazquez-Bare (2024). For each acoustic index, we test the null hypothesis that θ ≥ 0
with a one-tailed test, as specified in our analysis plan.

Our hypotheses are:

1) H1: An increase in the acoustic complexity index increases self-reported mental
well-being
H0: An increase in the acoustic complexity index does not increase self-reported
mental well-being
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2) H1: An increase in bio acoustic index increases self-reported mental well-being
H0: An increase in bio acoustic index does not increase self-reported mental well-
being

3) H1: An increase in acoustic entropy score increases self-reported mental well-
being
H0: An increase in acoustic entropy score does not increase self-reported mental
well-being
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