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Abstract 

 

Does lead pollution harm educational achievement? And are the marginal effects 

greater at low or high levels of lead? We use exogenous variation in lead pollution from 

water treatment in Glasgow, Scotland, combined with within-household sibling 

differences, to estimate the effect of lead on education. We compare pre and post-

treatment sibling differences between treated and control areas with difference-in-

differences estimation. We find a clear dose-response relationship. Treated areas with 

low prevalence of lead piping show no change compared to a control group. In contrast, 

high lead pipe prevalence areas show improvement in educational outcomes. Our 

findings indicate that countries and areas with very high levels of lead can expect large 

educational gains from even small amounts of lead abatement, while those with already 

low levels of lead can expect much lower marginal improvements. 
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1. Introduction 

Recent estimates indicate 1 in 3 children suffer from high blood lead levels (GBD, 2019). 

The short-term health consequences of lead are well known, but in recent decades 

studies have shown it may also have a variety of long-term, higher order outcomes, 

including lowering educational attainment (see section 2). Given there are potentially 

800m children worldwide with high lead levels, this implies huge future costs we are 

imposing now, and consequently large returns on investment in abatement.  

But lead is not the only pollutant, nor the only long-term cause of harm to children. 

Given production and political-economy constraints, lead abatement must compete 

against other policy needs, such as poverty reducing transfers, or greenhouse gas 

abatement. Balancing the long-term gains from lead abatement with other concerns 

requires knowledge of what long-term harm it does and, crucially, the relationship 

between that harm and the level of lead. This is called the dose-response relationship. 

Previous studies have found infant lead exposure to be associated with long-term 

harmful outcomes, but there is disagreement in the literature on the dose-response 

relationship.  Grönqvist, Nilsson and Robling (2019), find a threshold effect, where the 

later effects of lead on probability of graduation, or grade point average, are low, or 

non-existent, until around 5µg/dl in blood lead levels is reached. Reyes (2007) finds 

that for some outcomes the effects of lead are 20 times as large for the 4th quartile of 

lead exposure than they are for the 1st quartile. Sampson and Winter (2018) show no 

effect of lead on anti-social behaviour when blood lead is below 5µg/dl and increasing 

marginal effects at higher levels.  Gazze, Persico, and Spirovska (2021) find pre-school 

blood lead is linearly associated with worse education outcomes at the individual level, 

but also find large spill over effects from having peers with high lead levels. This 

potentially means spiralling adverse consequences once individual and networks effects 

are combined.  

In contrast, Evens et al., (2015) find higher marginal effects of lead on reading ability at 

lower levels of lead than at higher levels. Mielke and Zahran (2012) find the relationship 

between lagged air lead levels and assault rates to be linear. Miranda et al., (2007) find 

the relationship between blood lead and reading and mathematics ability to be linear, 

while Canfield et al., (2003) find that marginal effects on lead on IQ are greater below 



5µg/dl blood lead levels. With the exception of Reyes (2007) and Grönqvist, Nilsson and 

Robling (2019), these studies are correlational estimates, that do not use plausible 

exogenous variation to identify a causal dose-response relationship.  

We use the exogenous variation resulting from a treatment of the water supply in 

Glasgow, Scotland in November 1989 to estimate the effects of infant lead water 

ingestion at different doses on long-term education outcomes. Before treatment, 

Glasgow had water lead levels far in excess of those of Flint, Michigan in 2015, and the 

highest average blood lead levels of any city surveyed in the UK. After treatment, the 

percentage of households with lead-water levels greater than 50μg/l fell from 13% to 

2% (Watt et al., 1996a) and the blood lead level of mothers from Glasgow decreased 

from 11.9μg/dl to 3.7μg/dl (Watt et al., 1996a).  

We split our sample into high, low, or control group doses based on the prevalence of 

lead piping in the local area. Our main identification strategy uses the difference 

between siblings within the same household born either side of treatment, with 

difference-in-differences estimated between the dosage groups; the second strategy 

uses a difference-in-differences between dosage groups with outcomes averaged at the 

school level. We find little evidence of an effect for the low dosage group, but we do find 

evidence of socially significant effects for the high dosage group. 

Our findings are in contrast to the literature stating lead pollution has the highest 

marginal effects on human capital formation when it is at low levels. Our contribution is 

to show that at low levels lead has little effect on education outcomes, instead it is at the 

high levels where the greatest marginal effects can be found. The implications are that 

countries with low average lead levels cannot expect large gains in educational 

attainment from lead abatement, except in targeted programmes aimed at the highest 

lead polluted areas. However, countries and areas with high infant lead ingestion such 

as India, where as many as 60% of its 470m children have lead levels greater than 

5µg/dL, can expect huge future educational gains from lead abatement policies.  

 

2. Background 

 

2.1  Lead Pollution and Human Capital 



Lead has been recognised as harmful for thousands of years (See Needleman, 1992), but 

the long-term effects of infant lead ingestion on educational outcomes have only been 

investigated in recent decades. Lead water pollution when young is thought to be 

especially harmful for three reasons: firstly, children absorb up to 50% of ingested lead 

compared to 10% in adults (WHO, 2010); secondly, the blood-brain barrier is the main 

defence against large, water-soluble molecules, and this is not fully developed until after 

the first year of life, with in utero absorption being the most dangerous period 

(Goldstein, 1990); thirdly, a much higher share of infant diet tends to come from water, 

either through breast milk and their mother’s water lead ingestion (Ettinger et al., 

2004), or, more directly, from bottles of milk formula mixed with water (Baum and 

Shannon, 1997). In a 1993 survey, 84% of infants in Glasgow were bottle-fed (Watt et 

al., 1996b). 

Lead impairs nerve conduction (Sindhu and Sutherling, 2015), damages myelination in 

the nerve system (Brubaker et al., 2009), and can impede brain development (Lanphear, 

2015). This may affect educational outcomes directly, through nerve and brain injury.  

Lead has been associated with impaired cognitive functioning (Vlasak et al., 2019) and 

lower IQ scores (Schwartz, 1994). A second possible mechanism is through behavioural 

changes. Blood lead levels are associated with aggressiveness, anti-social behaviour, 

and delinquency (e.g.: Thomson et al., 1989, Needleman, 1996, and Reyes, 2015). These 

behaviours may have spill over effects on peers, so that even children with low-lead 

levels may experience worse educational outcomes due to peer behaviour (Gazze, 

Persico, and Spirovska, 2021).  

Given the likely strong relationship between infant lead levels and water lead, due to 

bottle feeding, water lead may be particularly harmful during early development, yet 

few studies look primarily at water lead levels and human capital. Zheng (2021) uses an 

instrumental variable estimation and finds increases in water lead levels reduce both 

mathematics and reading scores. Ferrie, Rolf, and Troesken (2012) find childhood water 

lead exposure to lower intelligence scores in US army enlistees. 

 

2.2  The Glasgow Water Treatment 

Glasgow’s population grew from around 90,000 citizens in 1801, to 300,000 in 1841 

(University of Portsmouth, 2022). Even in 1801, the water supply of 30 wells was 

inadequate being “impregnated with sewage and other deleterious matter” (Burnet, 



1869). The Council and several private companies in turn attempted to improve 

matters, by taking water from the Clyde River and water to the south. 

The Clyde water was pumped without being filtered and, due to the industrial use of the 

water, it was considered of poor quality, while the water supplied to the south of the 

city by the Gorbals Gravitation Water Company was of better quality. Even combined, 

however, these waterworks were not sufficient to keep the city supplied, especially not 

with water of good quality, so the Council eventually decided upon a new water supply: 

Loch Katrine. Katrine, a large and picturesque mountain lake, was considered more than 

adequate to supply Glasgow’s growing population with good quality water. Indeed, the 

quality of the water was much remarked upon. A report to the council from a chemist, 

one Dr Smith, reported that the water “was almost absolutely pure, clear to the utmost 

and without colour…[and] needs no purification”. He then recommended this water to 

the council over any other option saying, “no town will have an equal abundance of such 

remarkably pure water” (Burnet, 1869). 

The water is very soft and pure. Soft water lacks the mineral content found in harder 

waters and this means it has a low pH. Low pH water reacts with lead pipes (high 

plumbosolvency), dissolving the metal into the water supply (Kim et al., 2011). This was 

known at the time, due to the experiments of Robert Christison (1844). In 1854 one 

chemist, a Professor Penny, found that Loch Katrine water, after travelling through lead 

pipes, was “highly charged with lead”, and believed it would be hazardous to supply 

such water to Glasgow (Burnet, 1869). The city council collected statement from various 

professors, engineers, and inhabitants of cities with soft water, before deciding there 

was no health risk. Glasgow has been supplied with Loch Katrine water ever since. 

Professor Penny’s worries over the Glasgow water lead levels would not be returned to 

until the mid-20th century. UK blood lead monitoring surveys in the 1970s found that 

Glasgow had the highest geometric mean blood lead level in any city surveyed (Quinn, 

1985) at 18fg/dl. Six separate lead working sites were monitored in the same survey, 

and the Glasgow mean blood-lead level was higher than 5/6 of the lead-working sites. It 

was higher than the mean level of the lead workers themselves in 4/6 sites (Quinn, 

1985). Using these monitoring results, Quinn (1985) found that local plumbosolvency 

was much more closely related to local blood lead levels than distance to a road, and 

that lead-water intake was likely the biggest factor in the UK. 



By this time, the health impacts of “moderate” levels of lead were being taken seriously, 

and an EU directive set the maximum water supply concentration of lead to 50μg/l from 

the previous 100μg/l (Watt et al., 1996a). The Glasgow water supply was treated in 

1978 with lime (Calcium hydroxide) to raise the pH and reduce plumbosolvency. This 

raised the pH from 6.3 to 7.8, and reduced the water lead levels (Moore et al., 1981).  

However, in the late 1980s, the remaining levels of lead were deemed to still be too 

high. Surveys of water lead levels in residences found that in 1981, after the initial 

treatments, 13% of Glasgow households had water lead levels greater than 50μg/l 

(Moore et al, 1998), and 5% of homes had lead-water levels greater than 100μg/l 

(Moore et al., 1982). For comparison, the 90th percentile of lead-water samples in Flint, 

Michigan in 2015 was 31μg/l (Pieper et al., 2018). 

Therefore, a second treatment of adding orthophosphate to the water was begun in 

November 1989 (Watt et al., 1996a). Correspondence with the engineering team 

involved with the project indicate the treatment was successful within a few weeks 

(author correspondence, 2020), and lead-water levels fell. The percentage of 

households with lead-water levels greater than 50μg/l fell from 13% to 2% (Watt et al., 

1996a). A long-term survey of mothers giving birth from Glasgow shows a decline in 

geometric mean blood lead levels from 11.9μg/dl in 1981 to 3.7μg/dl in 1993 (Watt et 

al., 1996a). 

 





 

We use the plausibly exogenous reduction in lead intake resulting from the 1989 water 

treatment to identify the effect of lead on education outcomes. However, we also 

distinguish between areas with a high lead pipe prevalence and areas with a low lead 

pipe prevalence withing Glasgow.  

In Glasgow at this time there were estimated to be 160,000 housing units with some 

lead piping out of the 300,000 in the city (Watt et al., 1996a), but this was not equally 

concentrated. Far more of the older housing units had lead piping, either as service 

pipes under the ground, or internal piping. Surveys of the population in Glasgow 

showed that 19% in the high lead areas said they had lead piping compared to 9% in the 

other areas of Glasgow (Watt et al., 1996a). They also had far higher concentrations of 

lead in their water supply even after the 1989 treatment (table 1). McDonell, Campbell, 

and Stone (2000) found that the reduction in neural tube defects in the years after 

treatment was much greater in the high lead areas than in the low lead areas (table 2). 

These facts indicate a dose response relationship, where the effect of treatment will be 



higher in areas which have a higher prevalence of lead piping. We therefore divide our 

sample into “High Lead” and “Low Lead” for our main estimates.  

 

Table 1 – Water Lead Concentrations in High and Low Lead Pipe Prevalence Areas, 1993 

   
 Percent of Households 

μg/l High Lead Areas Low Lead Areas 
   
<2 37.4 53.8 
2-9 35.5 31.8 
10-24 17.7 8.3 
25-49 5.6 3.9 
≥50 3.7 1.5 
   
Observations 785 941 
   

Notes: Data from table 5 in Watt et al. (1996a).  

 

Table 2 - Pregnancy prevalence of neural tube defects for each 1000 live births 

 1983-95 1990-95 

High Lead Area 2.1 0.69 
   
Low Lead Area 2.4 1.8 
   

Notes: Data from table 2 in McDonell, Campbell, and Stone (2000). Neural tube defects are early stage in utero 

damage to the brain, spine, or spinal cord.  

 

 

3. Data 

Our education data for each child comes from the Scottish Qualifications Authority 

(SQA). They provide the education outcomes for each child, the year of examination, and 

the centre they attended (usually a school or college) for all of Scotland. We only have 

data for state schools, not for private schools or academies. However, 96% of pupils in 

Scotland use state schools5. We exclude schools in Edinburgh from our sample, as they 

underwent a similar treatment in 1991/92 partly due to the findings of the Glasgow 

lead monitoring, but all our results are robust to inclusion of the Edinburgh data (see 

 
5 Scottish Council of Independent Schools census: https://www.scis.org.uk/facts-and-
figures/#:~:text=SCIS%20uses%20the%20information%20collected,4%25%20of%20pupils%20in%20Scotland  

https://www.scis.org.uk/facts-and-figures/#:~:text=SCIS%20uses%20the%20information%20collected,4%25%20of%20pupils%20in%20Scotland
https://www.scis.org.uk/facts-and-figures/#:~:text=SCIS%20uses%20the%20information%20collected,4%25%20of%20pupils%20in%20Scotland


online appendix). SQA also provide matching indicators for siblings, where children are 

matched to the same family by surname, postcode and first line of address. Finally, they 

provide the Scottish Index of Multiple Deprivation (SIMD) 2009 quintile for each child’s 

postcode. The SIMD is a ranked index of deprivation on multiple dimensions (Income, 

Health, Education, Housing etc). The index is recalculated every 3 years. Although the 

ranking of each postcode moves around somewhat, the quintiles are relatively stable. 

We also use youth unemployment data for each year at the local authority level. 

All children in Scotland during this period sit exams in their fourth year at Standard 

Grade. They sit exams in several subjects. The passing grades for these exams go from 1, 

the highest, to 7, a fail. A grade of 1 or 2 is called a “Credit” grade and allows one to go 

on to study the next level in the following year (called a “Higher”). Points are also 

awarded for each grade in each subject, and these are used as a marker for progressing 

to tertiary level education. The better the marks received, the higher the number of 

points. We only include the first examination year where a child sits Standard Grades in 

our sample (i.e., we do not include resits or repeated years).  

We consider three outcome variables. The first is the total Standard Grade points 

achieved in that examination year. More points are better, but some subjects, such as 

Physics or Chemistry, are considered harder, but nevertheless taken as they are a 

prerequisite for some university courses (e.g., medicine often requires at least two 

science subjects). Some other subjects may be chosen instead if they are believed to be 

easier to get a Credit grade in, and the child does not wish to study medicine or 

engineering for example. Therefore, we consider two other outcomes: whether a child 

achieves a Credit grade in Mathematics, or in English. These are two subjects every child 

must sit, and therefore may give a better indication of change in ability rather than 

tastes in subjects. We use a Credit grade because this is the level needed to progress to 

“Highers” (a more difficult level of study, and a prerequisite for university) in the 

following year. 

We sort each child into the “High Lead”, “Low Lead” or “Control” based on their 1993 

school postcode, using the plan of Loch Katrine supplied households, and high and low 

leaded pipe prevalence used in the map of Watt et al. (1996a). See figures 1 and 2 for a 

map of the schools and the high and low lead areas. Postcodes are UK government 

administrative boundaries used for a variety of purposes including the sorting of mail. 



In urban areas they tend to be smaller than in rural areas. We do not have access to the 

postcode of the child, so the matching of child to area is not exact. However, state school 

catchment areas are based on the postcodes surrounding the school so we expect the 

child postcodes to be nearby, especially in urban areas, but there will be some classical 

measurement error which may attenuate estimates. Summary statistics for our data are 

included in table 3. 

 

Table 3 – Descriptive Statistics 

    

Panel A - Full Sample    

Variable N Mean Std Dev 

Outcomes    

Standard Grade Points 522661 163.106 80.269 
Mathematics Credit Pass (=1 if passed with credit 
score) 468490 0.307 0.461 

English Credit Pass (=1 if passed with credit score) 490212 0.425 0.494 

    

Covariates    

Child SIMD quintile 1 544041 0.213 0.41 

Child SIMD quintile 2 544041 0.204 0.403 

Child SIMD quintile 3 544041 0.201 0.401 

Child SIMD quintile 4 544041 0.198 0.399 

Sex (1 = Male) 558379 0.505 0.5 

Year of Birth 558379 1988.526 2.839 

Area Youth Unemployment (%) 558379 62.625 6.33 

    

Panel B - High Lead Areas Sample    

Variable N Mean Std Dev 

Outcomes    

Standard Grade Points 18248 155.499 74.628 
Mathematics Credit Pass (=1 if passed with credit 
score) 17004 0.259 0.438 

English Credit Pass (=1 if passed with credit score) 17650 0.337 0.437 

    

Covariates    

Child SIMD quintile 1 17763 0.41 0.492 

Child SIMD quintile 2 17763 0.234 0.423 

Child SIMD quintile 3 17763 0.155 0.362 

Child SIMD quintile 4 17763 0.117 0.322 

Sex (1 = Male) 18616 0.518 0.5 

Year of Birth 18616 1988.436 2.852 

Area Youth Unemployment (%) 18616 52.079 3.034 

    

Panel C - Low Lead Areas Sample    



Variable N Mean Std Dev 

Outcomes    

Standard Grade Points 35012 144.936 75.292 
Mathematics Credit Pass (=1 if passed with credit 
score) 31039 0.233 0.423 

English Credit Pass (=1 if passed with credit score) 33628 0.335 0.472 

    

Covariates    

Child SIMD quintile 1 35153 0.564 0.496 

Child SIMD quintile 2 35153 0.145 0.352 

Child SIMD quintile 3 35153 0.1 0.301 

Child SIMD quintile 4 35153 0.093 0.29 

Sex (1 = Male) 37144 0.48 0.5 

Year of Birth 37144 1988.535 2.841 

Area Youth Unemployment (%) 37144 54.563 6.016 

    

Panel D - Control Sample    

Variable N Mean Std Dev 

Outcomes    

Standard Grade Points 469401 164.757 80.655 
Mathematics Credit Pass (=1 if passed with credit 
score) 420447 0.315 0.464 

English Credit Pass (=1 if passed with credit score) 438934 0.435 0.496 

    

Covariates    

Child SIMD quintile 1 491125 0.181 0.385 

Child SIMD quintile 2 491125 0.207 0.405 

Child SIMD quintile 3 491125 0.21 0.407 

Child SIMD quintile 4 491125 0.209 0.407 

Sex (1 = Male) 502619 0.506 0.5 

Year of Birth 502619 1988.529 2.838 

Area Youth Unemployment (%) 502619 63.646 5.616 

    

 

 

 

 

 

Figure 1 – Distribution of Schools in Scotland 



 

Notes: Dots represent school locations. Due to travel distances and sparse population several markings for “Schools” 

on the islands may represent the same nominal school but are given different IDs in the data. 

 

 

 

Figure 2 – Distribution of Schools, High and Low Lead Areas in Loch Katrine Water 

Supply Area 



 

 

Notes: shaded area is the Loch Katrine water supply area. Darker shading indicates a high prevalence of lead piping. 

Lines represent different postcode sectors. Dots represent school locations. 

 

4. Empirical Strategy  

All of our analysis relies on the plausibly exogenous variation in lead ingestion, in the 

womb and in childhood, resulting from the orthophosphate treatment of the Loch 

Katrine water supply to Glasgow in November 1989. As lead ingestion has been shown 

to be particularly harmful in the womb, our treatment start date is for children 

conceived after treatment. Of course, we do not have data on when our sample was 

conceived, only the date of birth. We take as our start date 1st of September 1990. That 

is, given the treatment would be effective by end of November (author correspondence, 

2020), we take as the treatment group children born 9 months after this. The 

distribution of birth time from conception for term births is unimodal and symmetrical 



within the 10th-90th percentiles (Jukic et al., 2013). We believe there will only be minor 

classical measurement error resulting from this, but it may attenuate our estimates. 

Therefore, our estimates, if unbiased, may be a lower bound of the effect. 

Our main identifying assumption is that the water treatment in November 1989 is 

exogenous variation in the lead intake of children conceived within the Loch Katrine 

supply area in Glasgow. Therefore, we assume that this treatment has an effect on 

education outcomes and is not associated with any confounding variables. We estimate 

our main results with a variety of difference-in-differences specifications. Our estimand 

is the Average Effect of Treatment on the Treated (ATT). This requires an assumption of 

parallel trends, the change in outcomes would be the same for treated and untreated 

without treatment. Given Glasgow is an urban area, with much higher concentrations of 

poverty than the Scottish average, we therefore also condition on a variety of covariates 

so that we assume parallel trends conditional on these covariates in some specifications.  

As we have only one treatment period, that is common to all treated units, and a control 

group that is always untreated, we do not have to consider potential negative weighting 

arising from comparing earlier treated to later treated groups. Therefore, certain 

elements of the modern difference-in-difference literature, such as Goodman-Bacon 

decomposition (Goodman-Bacon, 2021) or reweighting of estimates (Calloway and 

Sant’Anna, 2021), do not apply. However, we do need to factor in another facet of the 

recent difference-in-difference literature: continuous treatment. 

Different treatment doses combined into one treatment group can mean biased 

estimates of the ATT. Callaway, Goodman-Bacon, and Sant’Anna (2021) show that when 

you combine different doses you need stronger assumptions than with standard two-

way fixed effects. The identifying assumption with standard two-way fixed effects 

difference-in-difference is parallel trends (or conditional parallel trends). With 

continuous treatment (i.e. different dosages) combined, this assumption will be violated 

if there is selection effects into different dosage units. For example, if people within the 

treatment area begin to move to housing that has more lead piping, due to the water 

now being safer. With combined dosage difference-in-differences, we require stronger 

assumptions of either no selection into different dosage areas on average, or 

homogenous treatment effects. 



These stronger assumptions can be relaxed back to standard parallel trends if, following 

the advice in Callaway, Goodman-Bacon, and Sant’Anna (2021), we separate the dosage 

units and compare them individually with the never-treated groups. Now all that is 

required is parallel trends between each dosage level separately with the control group. 

This is analogous to the traditional parallel trends assumption and can be made 

conditional on covariates. Callaway, Goodman-Bacon, and Sant’Anna (2021) show that 

this approach recovers an unbiased estimate of the ATT for that group and dose, but we 

sacrifice some efficiency by excluding some of the sample. 

Our best proxies for treatment dosage are the high and low lead areas of Glasgow as 

described in section 2. Following the advice in Callaway, Goodman-Bacon, and 

Sant’Anna (2021), we compare each separate dose group to the never treated group in 

separate regressions.  

In our first approach, we use the matched sibling-household data and carry out a simple 

difference-in-differences estimation. Given matched siblings live in the same household, 

with the same lead piping exposure before and after treatment, household and area 

characteristics will be the same between siblings, and we should be able to recover the 

ATT with this approach, given our assumptions. 

First we exclude households without siblings either side of the treatment divide. That is, 

we only consider households which have at least one older sibling born before 1st of 

September 1990, and at least one younger sibling born after this date. We take the 

difference between the siblings’ outcomes within the household. If there are more than 

one sibling on one side of the treatment divide we average their outcomes as shown in 

below: 

(1)   𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ℎ =  
∑ 𝑌ℎ𝑗

𝐽
𝑗=1

𝑛ℎ1
−  

∑ 𝑌ℎ𝑖
𝐼
𝑖=1

𝑛ℎ0
 

Where the Y is one of three outcomes outlined in the data section, h is the household 

identifier, and j is the individual identifier of a sibling born before treatment, and i for an 

individual born after treatment, 𝑛ℎ0 is the number of siblings in household h born 

before treatment and 𝑛ℎ0 the number born after. We expect this to be negative on 

average, as older siblings tend to outperform younger ones (see Keller, Troesch, and 



Grob, 2015; Lehmann, Nuevo-Chiquero, and Vidal-Fernandez, 2016; or Havari and 

Savegnago, 2022). 

We then average these household differences for the Control sample, the Low Lead 

sample, and the High Lead sample for all three outcomes. Finally, we take the 

difference-in-differences using these means. 

(2)   θ̂ =  
∑ 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ℎℎ ∈𝐺1

𝑁𝐺1

− 
∑ 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑_𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒ℎℎ ∈𝐺2

𝑁𝐺2

   

 

Where θ̂ is our difference-in-differences estimate of the ATT, G is the sample group 

(Control, Low Lead, or High Lead), and 𝑁𝐺  the number of households in that group.  

Our second approach uses the whole sample, but as we only observe each child once we 

must average outcomes at the school level. The baseline two-way fixed effects 

difference-in-difference specification is in (3).  

(3)   𝑌𝑠𝑡 = 𝛼 + θ 𝑇𝑟𝑒𝑎𝑡𝑠 × 𝑃𝑜𝑠𝑡 + 𝑿𝑠𝑡𝛃 +  γs + 𝜆𝑃𝑜𝑠𝑡 + 𝜖𝑠𝑡  

Where 𝛼 is an intercept term,  𝑇𝑟𝑒𝑎𝑡 is an indicator variable for if a school lies within 

the Loch Katrine water supply area, 𝑃𝑜𝑠𝑡 is an indicator for the time periods after 1st of 

September 1990, 𝑿𝑠𝑡  is a vector of school level characteristics, γs are school fixed 

effects, and 𝜖𝑠𝑡 is the error term. We cluster our estimated errors by school. The variable 

of interest is θ , the coefficient on the interaction 𝑇𝑟𝑒𝑎𝑡𝑠 × 𝑃𝑜𝑠𝑡. This is also an estimate 

of the ATT, but at the school level. 

Given the different dosage groups, we also split the school treated areas into High Lead 

and Low Lead. For example, the estimate of the causal effect on the High Lead group can 

be recovered from (4). 

(4)   𝑌𝑠𝑡 = 𝛼 +  θ̂ 𝐻𝑖𝑔ℎ𝑠 × 𝑃𝑜𝑠𝑡𝑠𝑡 + 𝑿𝑠𝑡𝛃 +  γs + 𝜆𝑃𝑜𝑠𝑡 + 𝜖𝑠𝑡  

Where the 𝑇𝑟𝑒𝑎𝑡 variable has been replaced with an indicator for if a school is in the 

High Lead area. (4) is estimated by excluding the Low Lead sample. Similarly, we can 

estimate the casual effect of Low Lead dosage by excluding the High Lead sample and 

estimating (4) but using an indicator for if a school is in a Low Lead area.  



We also use an event study specification, to see the placebo effects of 𝑇𝑟𝑒𝑎𝑡 interacted 

with years before the treatment, and to see if the effect is monotonic after treatment. 

This specification is outlined in below. 

(5)   𝑌𝑠𝑡 = 𝛼 + 𝜆𝑡 + ∑  𝛿𝑡
−1
𝜏=−𝑞 𝑇𝑟𝑒𝑎𝑡𝑠𝑡  +  ∑ 𝜃𝑡 𝑚

𝜏=0 𝑇𝑟𝑒𝑎𝑡𝑠𝑡 + 𝑿𝑠𝑡𝛃 + γs + 𝜖𝑠𝑡  

 

Where m and q are the leads and lags. To check the effects of different dosages we 

exclude either High or Low Lead groups as before and check the event studies 

individually compared to the control group. 

 

5. Results 

5.1  Matched Sibling Difference-in-Differences 

Table 4 panel A shows the average difference between siblings within a household, pre 

and post treatment for each dose group, as calculated in (1). As expected, older siblings 

tend to perform better than their younger siblings, within the same household across all 

outcomes, as can be seen by the negative signs. However, younger siblings in the High 

Lead area appear to perform better than their peers in the other dosage groups across 

the three outcomes. In contrast, the Low lead dosage group does not appear to perform 

better than the control group in Standard Grade points, and performs worse for the 

English credit outcome, but is better in the Mathematics Credit outcome. 

In panel B of table 4 we calculate the difference-in-differences as in (2). In the first 

column we compare the Low Lead sibling differences to the control group sibling 

differences. Wide standard errors mean that Bonferroni corrected 95% confidence 

intervals cover zero for all outcomes except the Mathematics Credit outcome, where the 

effect of treatment on the Low Lead group is estimated to have increased the probability 

of achieving a Mathematics credit pass by 3.6 percentage points.  

 

 

 



Table 4 – Differences Between Siblings in Same Housing, Pre and Post-Treatment 

    
Panel A – Mean Sibling Differences 

 Control Low Lead High Lead 

Standard Grade Points    

Mean Sibling Difference -31 -27 -15 
Standard Deviation (83) (76) (70) 
Observations 37302 2228 1232 

Mathematics Credit    

Mean Sibling Difference -0.083 -0.047 -0.040 
Standard Deviation (0.518) (0.516) (0.510) 
Observations 35361 2123 1222 

English Credit    

   Mean Sibling Difference -0.069 -0.074 -0.030 
Standard Deviation (0.546) (0.560) (0.550) 
Observations 36314 2202 1229 

 

   

 
Panel B – Difference in Differences 

 Low - Control High - Control High - Low 

Standard Grade Points    

Difference-in-Differences 4 17 12 
Standard Error (2) (2) (3) 

Mathematics Credit    

Difference-in-Differences 0.036 0.043 0.007 
Standard Error (0.012) (0.015) (0.018) 

English Credit    

Difference-in-Differences -0.005 0.038 0.043 
Standard Error (0.012) (0.016) (0.02) 

    

Notes: Panel A shows difference between siblings born before treatment and siblings born after, averaged by dosage 

group. Panel B shows the difference-in-differences estimate between the averaged differences in panel A.  

 

 

In the second column we take estimate difference-in-differences for the High Lead 

minus the control group sibling difference. Here the results are clearer. The treatment is 

estimated to increase the Standard Grade points achieved by 17, and the probability of 

achieve a mathematics credit pass by 4.3 percentage points. The point estimate for the 



increase in probability of an English credit pass is 3.8 percentage points, but Bonferroni 

corrected 95% confidence intervals cover zero for this outcome. 

In the third column we compare High and Low lead treatment areas. Here, the point 

estimates are all positive, suggesting dosage does make a difference and younger 

siblings in High Lead areas perform relatively better after the treatment than those in 

Low Lead areas. However, Bonferroni corrected 95% confidence intervals cover zero 

for all but the Standard Grade points outcome. 

The sibling difference results in table 4 suggest it is only in High Lead areas that there is 

a socially significant difference in education outcomes after treatment. We next move on 

to the school level difference-in-differences. The values in table 4 are also shown in 

figures 3 and 4. 

 

Figure 3 – Post-Treatment Younger Siblings results Minus Older Siblings Pre-Treatment 
Results by Group 

 

Notes: Figure shows average differences between younger siblings and older siblings for three different outcomes. 

Each outcome is a sibling difference pre and post treatment where the older sibling scores are subtracted from the 

younger siblings scores. Older sibling were born before treatment and younger siblings after treatment. High is the 

high lead areas of Glasgow, Low is the low lead areas of Glasgow, and control is the non Glasgow or Edinbugh areas of 

Scotland. 

 

 

 



 

 

 

Figure 4 – Difference-in-Differences Estimates by Group and Outcome 

 

Notes: Figure shows difference in differences estimates for three different outcomes. Each outcome is a sibling 

difference pre and post treatment where the older sibling scores are subtracted from from the younger siblings 

scores. These are then differenced again between the areas. Older sibling were born before treatment and younger 

siblings after treatment. High is the high lead areas of Glasgow, Low is the low lead areas of Glasgow, and control is 

the non Glasgow or Edinbugh areas of Scotland. Standard errors are clustered at School level and Bonferrono 

corrected.  

 

5.2 School Level Difference-in-Differences 

In table 5 we present the two-way fixed effect estimates for the full treatment and 

control sample. We present estimates for all three outcome variables, with and without 

school level covariates. All the point estimates are positive, suggesting the lower lead 

resulting from the water treatment may have had an effect, but Bonferroni corrected 

95% confidence intervals cover zero for all estimates. 

In table 6 we present the two-way fixed effect estimates for only the High Lead and 

Control schools, excluding those in the Low Lead zone of the Loch Katrine water supply 

area. This decreases the potential bias and lowers the misidentification risk resulting 

from differential treatment dosage as shown in Callaway, Goodman-Bacon, and 

Sant’Anna (2021). In all cases the point estimates are higher than in table 5, where we 



use the whole of the Loch Katrine water supply area. The estimates in Panel A suggest 

that the treatment increased by 18 points the average Standard Grade points achieved 

in High Lead area schools. Bonferroni corrected 95% confidence intervals do not cover 

zero in either case. The estimates in panel B suggest the treatment increase the 

proportion of pupils achieving a credit pass in mathematics by around 5 percentage 

points. Bonferroni corrected 95% confidence intervals do not cover zero for the 

estimate without school level covariates but do when these covariates are added. Panel 

C suggests the treatment increases the proportion of students achieving a credit pass in 

English by around 1-2 percentage points, but the Bonferroni corrected 95% confidence 

intervals cover zero in both cases. 

 

Table 5– Total Loch Katrine Water Supply Area, School Level Difference-in-Differences 

   
 (1) (2) 

Panel A – Standard Grade Points   

Treatment × Post 11.029 10.505 
 (5.72) (5.818) 

Observations 727 663 
Unit Level Covariates No Yes 
   
Panel B – Mathematics Credit Pass Share   

Treatment × Post 0.049 0.048 
 (0.022) (0.023) 

Observations 718 654 
Unit Level Covariates No Yes 
   
Panel C – English Credit Pass Share   

Treatment × Post 0.007 0.008 
 (0.017) (0.019) 

Observations 722 658 
Unit Level Covariates No Yes 
   

Notes: Table shows difference-in-differences estimation of school level average outcomes between treated schools 

and control schools. Standard errors are clustered by school and presented in brackets. Column (1) is estimate 

without school level covariates, and column (2) with. Covariates include index of multiple deprivation quintile, share 

of boys in school, and the local youth unemployment rate.  

 

 

 

 



 

 

 

 

 

 

 

Table 6 – High Lead Areas, School Level Difference-in-Differences 

   
 (1) (2) 

Panel A – Standard Grade Points   

Treatment × Post 18.662 18.204 
 (4.931) (4.936) 

Observations 680 616 
Unit Level Covariates No Yes 
   
Panel B – Mathematics Credit Pass Share   

Treatment × Post 0.056 0.054 
 (0.019) (0.022) 

Observations 671 607 
Unit Level Covariates No Yes 
   
Panel C – English Credit Pass Share   

Treatment × Post 0.016 0.017 
 (0.014) (0.016) 

Observations 675 611 
Unit Level Covariates No Yes 
   

Notes: Table shows difference-in-differences estimation of school level average outcomes between High Lead area 

treated schools and control schools. Standard errors are clustered by school and presented in brackets. Column (1) is 

estimate without school level covariates, and column (2) with. Covariates include index of multiple deprivation 

quintile, share of boys in school, and the local youth unemployment rate.  

 

 

In table 7, we show the same results but comparing the Low Lead areas to control areas, 

excluding the High Lead area schools. Here again all points estimates are positive, but 

Bonferroni corrected 95% confidence intervals cover zero in all cases. The point 

estimates are lower than for the High Lead sample for Standard Grade points and for 

Mathematics Credit passes, but higher for English Credit passes.  

 



 

 

 

 

 

Table 7 – Low Lead Areas, School Level Difference-in-Differences 

   

 (1) (2) 

Panel A – Standard Grade Points   

Treatment × Post 8.373 7.854 

 (7.007) (7.085) 

Observations 711 647 

Unit Level Covariates No Yes 

   

Panel B – Mathematics Credit Pass Share   

Treatment × Post 0.047 0.045 

 (0.027) (0.028) 

Observations 702 638 

Unit Level Covariates No Yes 

   

Panel C – English Credit Pass Share   

Treatment × Post 0.004 0.005 

 (0.022) (0.023) 

Observations 706 642 

Unit Level Covariates No Yes 

   

Notes: Table shows difference-in-differences estimation of school level average outcomes between Low Lead area 

treated schools and control schools. Standard errors are clustered by school and presented in brackets. Column (1) is 

estimate without school level covariates, and column (2) with. Covariates include index of multiple deprivation 

quintile, share of boys in school, and the local youth unemployment rate.  

 

As explained in section 4, the identifying assumption with difference-in-difference and 

continuous treatment when comparing each dose level individually with the control is 

parallel trends between the control group and the group that has a given dose level. 

This is analogous to the traditional parallel trends assumption and can be made 

conditional on covariates. When regressing with all dosages, stronger assumptions are 



required of either no selection into different does areas on average, or homogenous 

treatment effects.  

In this section we show the school-level average means for each dose group, and event 

studies for each outcome and group, estimates using (5). Figure  5 shows the school-

level mean outcomes over time. The Treatment group means are more volatile as they 

have far lower sample sizes.  For the High Lead group, starting from a lower base, there 

is convergence in outcome post-treatment with the control group. The High Lead group 

has a higher mean standard grade points achieved, and mean Mathematics Credit 

passes achieved by the end of the period but remains lower for English. There is less 

convergence for the Low Lead group, and this group appears to match the patterns on 

the control group before and after treatment.  

To test whether the effects observed in our two-way fixed effects are spurious, we 

perform event studies. These show the coefficient on treatment interacted with each 

year of our sample. Figure 6 shows the results for the full sample. There does appear to 

be some increase in coefficient size after treatment, but the confidence intervals are 

wide.  

Figure 7 shows the event study for High Lead compared to control. Here we see larger 

increases in the coefficient after treatment than in figure 6 for Standard grade points 

and Mathematics credit passes, but not for English Credit passes. The confidence 

intervals are also tighter, widening at the end as we get further from the reference year 

(1989), as is standard with event studies. Figure 8 presents the same results for the Low 

Lead sample. Here there is some upturn in the coefficients after treatment year, but the 

effects are more muted than for the high lead sample and the confidence intervals are 

extremely wide throughout.  

 

 

 

 

 



Figure 5 – Mean School Outcomes per Dose Group

 



Figure 6 – Event Studies, All Treatment Areas 

 

 

 

Notes: Charts show event study estimations of an indicator variable for treatment interacted with the year of birth. 

The outcome variable is the school level-average indicated in each chart heading. Outcomes are averaged by school, 

and then dosage group. Errors are clustered at school level. 

 

 



Figure 7 – Event Studies, High Lead Areas 

 

 

 

Notes: Charts show event study estimations of an indicator variable for treatment interacted with the year of birth, 

but Low Lead areas of the treatment group are excluded from the estimation. The outcome variable is the school 

level-average indicated in each chart heading. Outcomes are averaged by school, and then dosage group. Errors are 

clustered at school level. 

 



Figure 8  – Event Studies, Low Lead Areas 

 

 

Notes: Charts show event study estimations of an indicator variable for treatment interacted with the year of birth, 

but High Lead areas of the treatment group are excluded from the estimation. The outcome variable is the school 

level-average indicated in each chart heading. Outcomes are averaged by school, and then dosage group. Errors are 

clustered at school level. 

 

 



6. Discussion and Conclusion 

We estimated the effect of lower infant lead ingestion from drinking water on later 

educational outcomes using plausibly-exogenous variation from a water treatment 

programme in Glasgow, Scotland in 1989. Our results suggest that lower lead ingestion 

from water when an infant, and lower maternal lead ingestion when a child is in the 

womb, leads to better grades at age 16. However, our results show that the positive 

effects are concentrated within the areas of high lead pipe prevalence. The levels of lead 

in the water in Glasgow before the 1989 treatment were generally higher than those 

seen in Flint, Michigan in 2015. Even after treatment, the distribution of lead-water 

levels in the High Lead area was similar to that of Flint in 2015 (Table 1).  This implies 

that socially significant improvements in education outcomes will only be seen when 

the reduction in lead pollution is large.  

This is in line with the literature on lead outcomes that shows the does-response effects 

are non-linear.  Grönqvist, Nilsson and Robling (2019), show that the effects of lead are 

low until a threshold of around 5 µg/dl blood lead levels. Reyes (2007) shows that 

effects are far stronger for the 4th quartile of lead exposure, in some cases 20 times as 

large as for the 1st quartile. Sampson and Winter (2018) show a clear non-linear 

increasing relationship between infant blood lead levels and anti-social behaviour in 

teenagers, with no effect below 5 µg/dl. Our results are in contrast to those arguing the 

marginal effects are higher at low levels of lead, or that the effects of lead are linear.  

There are a number of limitations to this study. Firstly, the treatment group is 

concentrated in one urban centre, with treatment at one point in time. This potentially 

limits the external validity of our results. Glasgow notoriously has a number of 

unexplained poor health outcomes (known as the “Glasgow Effect”) and although we 

estimate the ATT, this tells us little about the effects of treatment on the control group. 

Secondly, although there is a reasonably large sample at the individual-sibling level 

differences in table (3), at the school level averages the sample is very limited. It may be 

that our failure to find larger effects for the low leads sample is related to the small 

number of schools within Glasgow, and the measurement error in assigning High or 

Low lead to children within a school’s catchment area. A third limitation is that 

education is a high-order outcome, with many contributing factors. Our results say 



nothing about other, more direct effects, such as those on health, which likely have a 

different dose-response relationship.  

The implications of our findings are that the gains from lead abatement on education 

are non-linear. Therefore, lead abatement programmes and infrastructure spending 

should first be targeted at those with the highest levels of lead ingestion when this is 

possible. This is especially important in low and middle-income countries, where the 

average blood lead levels are far higher (GBD, 2019). By some estimates 1 in 3 children 

have blood lead levels above 5 µg/dL, and 280 million in India alone (GBD, 2019). 

Therefore, while lead abatement in low lead areas may have some benefit, when 

discretion is possible, resources should be targeted at areas and countries with much 

higher blood lead levels. We recommend future research on the effect of lead on higher 

order outcomes, like education, not only test whether an effect is socially significant, but 

also attempt to map the shape of the dose-response relationship.  
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