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Abstract 

We explore whether maternal lead exposure affects birthweights and child mortality in a 

setting where average blood lead levels were higher than in any country today. We 

analyse two drinking water interventions in Scotland that reduced lead levels in Glasgow 

and Edinburgh from 1978 onwards. Using both a staggered difference-in-differences 

design and a regression discontinuity design, we examine administrative data of over 

350,000 births between 1975 and 2000. Our findings indicate this lead abatement did not 

significantly increase birthweights or reduce under-5 mortality. 
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1 Introduction  
 

An estimated 2.4 million children die within their first year of life globally (UN IGME 

2021). A further estimated 2 million are stillborn (UNICEF 2022a). High levels of lead in 

the environment have, historically, been linked with poor health outcomes for children. 

With an estimated 1-in-3 children having elevated levels of lead in their systems (GBD, 

2019), and the global burden of lead estimated to be responsible for as many as 900,000 
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deaths a year (UNICEF, 2020), reducing lead pollution may be one route to prevent 

infant death and morbidity.  

In this paper, we follow Troesken (2006) in examining the impact of lead water 

pollution on infant health outcomes. Lead can contaminate drinking water through 

chemical reactions to plumbing. Metal from lead pipes and fixtures can dissolve or erode 

into the water supply. This reaction is particularly severe when the water has low 

mineral content or high acidity, and it is said to be highly plumbosolvent.  

We focus on the effect of lead pollution on birthweight and under-5 mortality 

(birthweight being a proxy for a wide range of future life outcomes, see section 2.1). 

Previous evidence shows mixed findings on birthweights and on under-5 mortality (see 

section 2.1), with most studies relying on correlational estimates of the relationship 

between lead pollution and birth outcomes, or low sample sizes. The very few quasi-

experimental papers, reviewed in Clay et al. (2024), tend to find an effect, but the quasi-

experimental paper with the largest sample size (Grönqvist et al., 2020, appendix E), 

does not. In their review of lead and infant health papers, Clay et al. (2024) cite the 

paucity of evidence and call for more research on this topic. We directly answer that call. 

Our contribution is to examine the effects of lead pollution on infant health outcomes in 

a setting where blood lead levels were higher than the average levels found in any 

country today (Ericson et al., 2021). We use rich administrative data containing all 

births in Scotland’s two largest cities – Glasgow and Edinburgh – and the surrounding 

areas over the period 1975-2000. We link this data with home address at time of birth, 

mother’s characteristics, and infant health outcomes up to 5 years later. We combine 

this administrative data with plausibly exogenous variation in lead exposure from two 

separate interventions by public drinking water supply agencies in Glasgow and 

Edinburgh. This combination of data allows us to credibly identify the effect of lead on 

birthweight and under-5 mortality. The interventions we examine sharply reduced 

water lead levels and blood lead levels in both cities. Linking the data to home address 

allows us to capture if a mother and child lived in an area subject to the lead reduction 

treatment at the time of birth.  

Our main research design, based on a robust, staggered difference-in-differences 

approach, improves upon most of the previous literature which is based on selection on 
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observables as an identification strategy. Selection on observables may result in biased 

estimates, as lead pollution is correlated with socio-economic factors. Additionally, 

many of the studies have small sample sizes, while our sample includes over 650,000 

children.  

The case studies of Glasgow and Edinburgh are noteworthy as these are areas with 

historically high levels of lead before the interventions. Measured average blood lead 

levels in Glasgow were 18μg/dl for everyone (Quinn, 1985) and 15μg/dl for mothers 

(Watt et al., 1996a), whereas the highest average blood lead levels today in any country 

is 11.4μg/dl in Pakistan (Ericson et al., 2021). Edinburgh and Glasgow were 

characterised by acidic soft water which made them especially plumbosolvent. In 1975, 

33% of households in Scotland had water lead levels above 50μg/l, compared to only 

10% in England. Glasgow was particularly affected, with 50% of households surveyed 

having water lead levels above 100μg/l, mainly due to the nature of the soil chemistry 

from which drinking water was collected (Quinn, 1985; Potter, 1997; Richards and 

Moore, 1984). We rely extensively on the long-running Glasgow (Watt et al. 1996a) and 

Edinburgh (Macintyre et al. 1998) lead studies, which meticulously detailed and 

researched the reductions in the water and blood lead levels over the 1980s and 1990s.  

We do not find evidence for an effect of lead in drinking water on birthweights or under-

5 mortality. We perform a large variety of robustness checks, including an alternative 

regression discontinuity design, and find similar results in all cases.  

We believe that, although high lead levels clearly have an effect on many outcomes, our 

study found no discernible effect on birth and infant outcomes at the lead levels present 

in Scotland during the period under investigation. Our findings suggest that when lead 

significant strides have already been made towards improving infant health, as was the 

case in Scotland from the mid-1970s onwards, there are limited short-run effects of lead 

remediation on acute health outcomes. However, it is plausible that exposure to even 

low levels of lead at birth or during early childhood could have long-term impacts on 

critical outcomes such as educational attainment, propensity to commit crime, and 

productivity (see section 2.1). We conclude that while lead remediation is still 

worthwhile, our study does have implications for the importance allocated to lead 

remediation compared to other infant outcome interventions in specific settings. If such 

“low-hanging fruit” policies as improved nutrition or better neonatal healthcare are still 
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to be implemented, and resources are constrained, then it may be better to prioritise 

these interventions over lead remediation. 

 

2 Background 
 

2.1  Lead Pollution and Birth Outcomes 

A child is first exposed to lead pollution through the placenta (Dorea and Donangelo, 

2006). A mother’s exposure to lead can in turn expose a foetus to lead. Furthermore, due 

to increased bone remodelling, previous maternal lead pollution can affect the foetus, as 

both lead and calcium (chemically similar) are released from the bones at an increased 

rate during pregnancy (Yurdakök, 2012). Maternal and infant lead levels are of similar 

magnitudes and highly correlated (Al-Saleh et al., 1995), but the relationship between 

exposure and absorption of lead is complex. For example, it is mitigated by maternal 

calcium intake (Dorea and Donangelo, 2006). Therefore, there are mediators between 

lead exposure and the damage it may cause. 

A large literature has found diverse impacts of lead pollution. Biological harms include 

damaged nerve system and brain development when young (Cecil et al., 2008, Brubaker 

et al., 2009), and at higher levels abdominal pain, headaches, and seizures (WHO, 2010). 

Behavioural harms include aggressiveness (Marcus et al., 2010), worse memory, and 

lower attention span (Vlasak et al., 2019). The wider socio-economic impacts resulting 

from these include increased propensity to commit crime (Higney et al., 2022), lower 

educational attainment (Hollingsworth et al, 2022, Zheng, 2021), and possibly lower 

productivity due to health damage (He and Ji, 2021). 

Exposure to lead pollution can have significant negative impacts on the development of 

children, both before and after birth. In severe cases, it can even result in stillbirth or 

death. Numerous studies have been conducted to determine the extent of these 

damages. In this paper, we focus on the effect of lead pollution on birthweight and under-

5 mortality. We use birthweight because it is a generally accepted proxy for future health 

outcomes. It is associated with a wide range of health outcomes such as higher 

cardiovascular and cancer deaths, diabetes, and obesity, as well as more immediate 

health outcomes such as under-5 mortality and morbidity (Law, 2002, Wilcox, 2001; 
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Chatterji et al., 2014; Behrman and Rosenzweig, 2004;Royer 2006). However, it is 

generally not thought to be low birthweight itself that causes these harms, rather it is a 

proxy for underlying biological conditions, such as low nutrient ingestion in the womb 

or premature birth (Wilcox, 2001). We use under-5 mortality as it is the most damaging 

of possible harms from lead ingestion. 

A number of studies estimate the relationship between lead exposure and birthweight. 

Xie et al. (2013) find a negative correlation between maternal or cord lead levels and 

birthweight in 252 infants. Similarly, Bornschein, R.L. et al. (1989) find a negative link 

between maternal blood lead levels and birthweight in 202 inner city infants. Taylor et 

al. (2014) find that 12% of infants whose mothers have elevated levels of lead (>5μg/dl) 

have low birthweight compared to 10% when lead levels are lower. In contrast, Azayo et 

al. (2009) find no association between maternal blood lead levels and birthweight in 150 

women in Tanzania, but the average lead levels were below 5μg/dl, which is the 

threshold used by the WHO guidelines (WHO, 2021). Golmohammadi et al. (2007) use a 

sample with much higher average lead levels but also find no association in their sample 

of 89 infants in Iran.  McMichael et al. (1986) found no association with birthweight for 

749 mothers in Australia, although they do find an association with other outcomes such 

as spontaneous abortion.  

In summary, the correlational findings on birthweight are mixed, in terms of both 

disagreeing on the presence of an effect and on the level of lead at which an effect is 

found. However, one problem with the previous papers is that they rely on selection on 

observables as an identification strategy. This likely biases estimates, as lead exposure is 

often confounded with poverty, race, and education. Many of the studies also have low 

sample sizes, and so may be inadequately powered. Recently, studies with improved 

identification strategies have examined the relationship between lead and birthweights. 

Most of these quasi-experimental studies are reviewed in Clay et al. (2024) and tend to 

find an effect. For example, Dave and Yang (2022) look at a setting where the pH on one 

side of the water supply in Newark fell sharply, and therefore began leeching lead from 

pipes again, while it remained steady on the other side of the city.  They found an effect 

on birthweight, but it became smaller and not significant when more post treatment 

years are added. They rationalise this as showing the effects of mitigation strategies by 

mothers, such as moving to bottled water, once the increased lead levels were widely 



6 
 

known. Missing from the main results of the review was Grönqvist et al. (2020) who use 

an instrument of local lead moss levels for blood lead levels with a sample of 800,000 

children in Sweden and find no effect on birthweights or premature births. 

For spontaneous abortion (before 28 weeks) and stillbirths (after 28 weeks) high levels 

of lead have long been known to have an effect. So much so, that lead oxide was 

described as being used as an abortifacient by women in the 1800s (Hall and Ransom, 

1906). In some cases, the amounts of lead ingested were strong enough to cause lead 

poisoning in the mother (Ransom, 1900). There are many papers which have examined 

the effects on spontaneous abortions, stillbirths and their correlates. Falcon et al (2003) 

find that premature births and pregnancy anomalies tended to have higher levels of lead 

in the placentas of 83 births (although they find no association with birthweight). 

Wibberly et al (1977) found that lead levels were higher in placentas where a neonatal 

death occurred in Birmingham. In contrast, McMichael et al. (1986) do not find any 

difference in pre-pregnancy maternal blood lead levels for neonatal deaths and other 

births. Angell and Lavery (1982) collected cord blood lead levels in 635 cases and found 

no relationship with lead levels and pregnancy complications that might lead to death 

such as preterm delivery or premature membrane rupture, although they did not look at 

spontaneous abortions/stillbirths directly. Vinceti et al. (2001) examine historical birth 

anomalies in a heavily lead polluted area of northern Italy. They find increased oral 

clefts and other disabilities but no increase in neural tube defects.  

Looking specifically at studies which use quasi-experiments, these are again reviewed in 

Clay et al. (2024). They find 3 studies that looked at mortality and all find an effect. As an 

example, Clay et al. (2014) use the differences in city water pH levels as an instrument 

for lead exposure and find lead increased deaths. Although not included in the review, 

Edwards (2014) also finds that a short-term spike in lead water pollution in Washington 

DC (due to a change in the chemical treatment) resulted in an increase of the foetal 

death rate. Grönqvist et al. (2020) do not look specifically at deaths but do not find any 

effect on premature births. 

2.2 Lead Plumbing and Water Treatment in Glasgow and Edinburgh 

Scotland has seen greatly reduced infant deaths from all causes since 1900 (figure 1). 

Starting in the 1970s, interventions to reduce the amount of lead in drinking water 
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supplies began in Edinburgh and Glasgow, and were improved upon in the 80s and 90s. 

This was after infant deaths and stillbirths had already sharply reduced, thanks to 

improved nutrition, hygiene, and health practices. Therefore, this is a setting where the 

relatively easy gains had already been exhausted, and lead might be thought to account 

for a larger share of the remaining deaths and pregnancy complications.  

Figure 1 – Deaths Within First Year of Life, per 1000 Births in Scotland

 

Source: National Records of Scotland (2022) 

 

Lead piping was widely used in Scotland before being banned for new work in 1968 

(Richards et al., 1980). Lead is malleable, relatively cheap, and has an extremely long life 

as infrastructure (Feigenbaum and Muller, 2014, and Krebs, 2019). Lead piping began to 

be phased out from the 70s in Scotland, but still, in the 90s, as many as 589,000 homes 

in Scotland were estimated to contain lead pipes (Potter, 1997), around 30% of the total. 

There were also as many as 60,000 water storage tanks made of lead, mostly in Glasgow 

and Edinburgh (Krebs, 2019). These were used because water service was still 

intermittent in the first half of the 20th century. The tanks allowed households to store 

and use water during any non-flowing periods.  

The reason lead water pipes have not been entirely replaced are twofold: 1) It is 

expensive, and 2) Homeowners do not know they have lead pipes and that they are 

responsible for their replacement. Communication pipes are owned by the water 
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supplier and those made of lead have now all been replaced (Akoumianaki, 2017). 

Internal lead piping still exists in many households but has also been gradually replaced 

and is estimated to only account for 20-30% of the remaining lead pollution in home 

water supplies in the UK (Akoumianaki, 2017). The main pollution burden is thought to 

come from the lead supply pipes (also called service pipes). These are the responsibility 

of the property owner to replace, but are underground, and therefore difficult to see. An 

added complication is that property owners may not know they have the responsibility 

to obtain replacement, even though grants are available. Today there are estimated to be 

273,000 homes out of 2.6 million in Scotland with lead piping (Robertson et al., 2020). 

Watt et al. (2000) estimated as many as 160,000 households out of 300,000 in Glasgow 

alone had a lead service pipe in 2000. 

The dangerous combination of naturally acidic water chemistry and lead pipes began to 

be taken seriously in the 1970s. The UK’s Department for the Environment carried out a 

series of surveys of blood lead levels in the 70s and 80s. The findings were that “The 

highest blood lead concentrations were related to plumbosolvent water” and not 

distance to roads (Quinn, 1985). The acidic soft water in Scotland’s two largest cities 

made piping there extremely plumbosolvent. In 1975 surveys found 33% of households 

in Scotland had water lead levels above 50μg/l, compared to 10% in England (Potter 

1997). Glasgow was especially viewed as a problem, with 50% of household surveyed 

having water lead levels above 100μg/l (Richards and Moore, 1984). Average blood lead 

levels were higher in both cities than in any country today (figure 5 and Ericson et al., 

2021). 

This paper exploits two interventions to reduce lead in the water supply. We treat these 

as natural experiments, given the somewhat arbitrary assignment of water treatment to 

Glasgow and Edinburgh (treatment groups), while leaving many adjacent areas 

untouched until years later (control groups). These control areas were not only treated 

later, but also had higher pH levels for their untreated water than the treatment areas.  

In particular, we rely on these plausibly exogenous variation of lead to identify 

treatment effects of lead on birth outcomes:   

• Treatment 1: the staggered increase in pH levels through lime dosing in Glasgow 

and Edinburgh. This occurred in 1978 for Glasgow, Edinburgh Southwest and 

(partially) Edinburgh Central, and in 1985 for Edinburgh Northeast. Importantly, 
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these interventions were not carried out in the many surrounding areas of these 

cities until much later. 

 

• Treatment 2: the staggered dosing with orthophosphate in both cities in 1989 in 

Glasgow and in 1991 in every area of Edinburgh. Also in this case, this treatment 

was not implemented in the neighbouring areas until years later. 

A full timeline of the treatments is given in figure 2. The control group in all cases 

consists of adjacent areas that did not receive the treatment until later (depicted by the 

grey areas in figure 6). This timeline, along with different treatment groups, provides the 

scope for the implementation of staggered difference-in-differences methods, described 

in Section 4. 

Figure 2 - pH Levels in Each Water Supply Area 

Notes: This chart show pH levels for the various water supply areas in different years. It also shows when the lime 

dosing (treatment 1) and orthophosphate dosing (treatment 2) began in each area. Water engineers targeted pH 

levels to be well above 7 to reduce plumbosolvency. Sources: Macintyre et al., (1998), Richards et al., (1980) and Watt 

et al., 1996. 
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Treatment 1, lime dosing was undertaken because experiments with the Glasgow water 

supply in 1973 showed it would raise the pH effectively and thus lower plumbosolvency 

(Richards et al., 1980). Following this, in both Glasgow and Edinburgh, an investment in 

an automatic lime-dosing system was considered worthwhile. These began operation in 

1978. In Glasgow, which is supplied by Loch Katrine water, the pH was raised from 6.3 

to 7.8 after this dosing (figure 2).  The Glasgow water supply area at this time is mapped 

in figure 3. This map also highlights postcodes with a higher prevalence of lead piping in 

homes.   The distinction between areas with high and low prevalence of lead pipes is 

based on a survey conducted in Glasgow in the early 1990s which findings are 

summarised in Watt et al. (1996a). We exploit the difference in high and low lead 

prevalence areas in Glasgow as a robustness check in the tables A.8 and A.9 in the 

appendix. 

In Edinburgh, the city was supplied with water from two main sources: Alnwickhill, 

which served the north-eastern part of the city (referred to as Edinburgh NE for 

simplicity), and Fairmilehead, which catered to the south-western region (Edinburgh 

SW). The central area of the city (Edinburgh Central) received a combined supply from 

both these sources. See figure 4 for the map of these water supply areas. The water from 

both these sources was relatively soft, with a pH level of around 7 before dosing. In 

1978, a successful lime dosing at Edinburgh SW raised the pH level to above 8. However, 

similar efforts at Edinburgh NE faced technical difficulties, delaying effective dosing until 

1985. As a result, the pH level in Edinburgh NE remained below 8 until after 1985, when 

it eventually rose to around 8.5. Edinburgh Central was supplied jointly by Edinburgh 

NE and Edinburgh SW and therefore received a partial treatment. However, when 

measured in 1985 it was found that its pH level exceeded 8, aligning more closely with 

the pH level observed in Edinburgh SW, the area treated successfully in 1978.  The pH 

levels before and after the lime dosing for each water supply area are depicted in figure 

2. This data provides a clear comparison of the effectiveness of the treatments in 

Glasgow and Edinburgh SW in 1978 and in Edinburgh NE in 1985.  
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Figure 3 - Historical Loch Katrine Water Supply Area with High and Low Lead Piping 
Prevalence 

 

Note: The areas in dark and light blue represent treated areas that underwent water lead reduction interventions in 

1978 and 1989. The heterogeneous effect of these interventions on areas with higher and lower prevalence of lead 

piping is investigated in the Appendix. Source: Watt et al. (1996a).  
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Figure 4 - Historical Water Supply Areas in Edinburgh 

 

Note: The North-East area of Edinburgh (Edinburgh NE) was served by the Alnwickhill water supply. The South-West 

area of Edinburgh (Edinburgh SW) was served by the Farmilehead water supply. The central area (Edinburgh Central) 

is jointly served by both water supplies. 

 

These treatments lowered both water and blood lead levels (figure 5), but not enough. 

Treatment 2, orthophosphate dosing, was carried out to further decrease lead in the 

water supply. Orthophosphate dosing reduces the solubility, and therefore 

bioavailability, of lead in the water supply (Comber et al, 2011). This is a different 

mechanism for reducing lead pollution compared to lime treatment, which raises the pH. 

This was done in Glasgow in 1989 and in all of Edinburgh in 1991. This further recued 

blood lead levels (figure 5). As the UK government brought in stricter lead-water 

maximum levels, other areas followed. Eventually, in the 2000s, 95% of the UK’s water 

would be treated with orthophosphate (Hayes and Hydes, 2012).  
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Figure 5 – Water and Blood Lead Levels in Glasgow and Edinburgh 

 

Sources: Watt et al., (1996a) and Moore (1998), Macintyre et al., (1998) 

Figure 6 - Map of Treatment and Control Areas.  
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3 Data 
 

We use health data from Public Health Scotland (PHS). The data covers all the pregnancy 

outcomes in Glasgow, Edinburgh, and the surrounding postcode areas of each city for 

the period 1975 to 2000. This data is from the Scottish Morbidity Records (SMR) and the 

Death, Birth and Stillbirths Registrations (NRS) Furthermore, from the NRS records, we 

link live births records with death registrations to identify if a child died before age 

five5.                                                                                                                                                                                                              

These data are matched to the historical Scottish Water Supply area maps for the 

relevant areas by using maternal postcodes for the relevant period. That is, the address 

of the house at the time of pregnancy is assigned to the postcode and coded as the 

relevant treatment/control group. The map of water supply areas, and the various 

treatment groups are included in figures 3, 4, and 6. Figure 3 shows the Loch Katrine 

water supply area during the period the data cover. There is a further split in the Loch 

Katrine supply area between postcode sectors with relatively high levels of lead piping 

compared to those with relatively low levels of lead piping, as given in Watt et al. 

(1996a). In high lead areas, 19% reported lead piping in a survey, while in low lead 

areas it was 9%. Figure 4 shows the water supply areas in Edinburgh during the period 

the data cover. The Fairmilehead source supplied mostly the west of Edinburgh (which 

we label Edinburgh SW), while Alnwickhill served Edinburgh NE. The “Joint” area, which 

we label for simplicity Edinburgh Central, is supplied by both water sources during this 

period. As explained in the methods section, the first treatment of liming was effective in 

1978 in Edinburgh SW, but not effective till 1985 in Edinburgh NE. We therefore 

consider Edinburgh Central which is served by both sources as being treated at the same 

time as Edinburgh SW in 1978, but exclude it as a robustness check in the appendix. 

Our two main outcomes are birthweight and under-5 mortality. We use only single 

births. Twins, and other multiple births are excluded as their outcomes tend to be very 

different, with lower birthweights in comparison to single births, as well as different 

probabilities of complications. However, multiple births are only around 1.5% of all 

births. Our mortality indicator includes all deaths and recorded non-viable pregnancies, 

 
5 We would like to thank the Electronic Data Research and Innovation Service (eDRIS) of Scotland for their help with 
data handling and access. 
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stillbirths and spontaneous abortions. We also link the data with Scottish Morbidity 

Records so that it includes any deaths up to age 5. Under-5 mortality is the commonly 

used definition of child mortality and is the indicator used in Sustainable Development 

Goal (SDG) target 3.2: “Newborn and child mortality: By 2030, end preventable deaths of 

newborns and children under 5 years of age, with all countries aiming to reduce 

neonatal mortality and under‑5 mortality”6. Additional data used as controls at the 

individual level include the biological sex of the baby, and a series of mother's 

characteristics such as age, height, and previous obstetric history, such as the number of 

previous spontaneous abortions, and number of previous pregnancies. At the postcode 

level, the data is linked to Carstairs scores7, which are material deprivation indices that 

rank different areas by using information from the 1981 census about car ownership, 

male unemployment, overcrowding and low social class. If a postcode is in the bottom 

two deciles, we code that postcode with an indicator variable as being in a deprived 

area. This link to deprivation allows us to control for higher income households 

undertaking more pollution avoidance behaviour. Table 1 includes descriptive statistics 

of the variables used. 

  

 
6 See the SDG targets and indicators here: https://sdgs.un.org/.  
7 These are rankings of areas by material deprivation. The variable takes into account material good ownership, such 
as car ownership, self-reported class, and unemployment amongst other variables to make an index. The Cairstairs 
scores were originally developed by Carstairs and Morris (1991) and are regularly generated and published by the 
MRC/CSO Social and Public Health Sciences Unit, the University of Glasgow 
(https://www.gla.ac.uk/schools/healthwellbeing/research/mrccsosocialandpublichealthsciencesunit/programmes/i
nequalities/healthinequalities/determinantsofhealthandhealthinequalitiesinscotland/carstairsscores/). 

https://sdgs.un.org/
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Table 1 - Descriptive Statistics 

Variable Group Mean Median Std Dev Obs 

Birthweight (grams)      

 Control 3318 3360 594 353,643 

 Edinburgh 3320 3360 595 76,498 

 Edinburgh NE 3310 3350 603 26,172 

 Edinburgh SW 3372 3410 567 8,315 

 Joint 3317 3360 595 42,011 

 Glasgow 3257 3300 591 216,771 

Death Indicator Variable      

 Control 0.01 0 0.09 353,643 

 Edinburgh 0.01 0 0.09 76,498 

 Edinburgh NE 0.01 0 0.10 26,172 

 Edinburgh SW 0.01 0 0.09 8,315 

 Joint 0.01 0 0.09 42,011 

 Glasgow 0.01 0 0.09 216,771 
Proportion Living in 
Deprived Areas (Carstairs 
Index)      

 Control 0.11 0 0.32 353,643 

 Edinburgh 0.13 0 0.34 76,498 

 Edinburgh NE 0.06 0 0.23 26,172 

 Edinburgh SW 0.04 0 0.19 8,315 

 Joint 0.20 0 0.40 42,011 

 Glasgow 0.59 1 0.49 216,771 

Total Previous Pregnancies      

 Control 1.18 1 1.28 353,643 

 Edinburgh 1.12 1 1.29 76,498 

 Edinburgh NE 1.07 1 1.24 26,172 

 Edinburgh SW 1.15 1 1.27 8,315 

 Joint 1.15 1 1.31 42,011 

 Glasgow 1.24 1 1.41 216,771 

Mother's Age      

 Control 27.72 28 5.29 353,643 

 Edinburgh 28.43 29 5.46 76,498 

 Edinburgh NE 28.25 28 5.32 26,172 

 Edinburgh SW 29.93 30 5.24 8,315 

 Joint 28.25 28 5.54 42,011 

 Glasgow 26.90 27 5.58 216,771 

Number of Previous 
Spontaneous Abortions      

 Control 0.22 0 0.57 353,643 

 Edinburgh 0.23 0 0.59 76,498 

 Edinburgh NE 0.23 0 0.57 26,172 

 Edinburgh SW 0.24 0 0.61 8,315 

 Joint 0.23 0 0.59 42,011 

 Glasgow 0.23 0 0.59 216,771 

Male Infant Proportion      

 Control 0.51  0.50 353,643 

 Edinburgh 0.51  0.50 76,498 

 Edinburgh NE 0.51  0.50 26,172 

 Edinburgh SW 0.52  0.50 8,315 

 Joint 0.51  0.50 42,011 

 Glasgow 0.51  0.50 216,771 
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4 Methods 
 

We use the plausibly exogenous change in water treatments, at different points in time, 

to identify the effect of lead-water pollution on birth and early life health outcomes. Our 

main specifications use a staggered difference-in-differences design. We further discuss 

the estimands, assumptions necessary, and specifications below. The following section is 

largely based on the expositions in Athey and Imbens (2022), Wooldridge (2021), and 

Wooldridge (2010). 

 

4.1 Estimands 

Our main results focus on three estimands. First, the average effect of water treatment 

(and therefore lead reduction) at time 𝑡 on the group which began treatment at time 𝑟.  

We write this 𝜏𝑟𝑡 and define it formally below. 

(1) 𝜏𝑟𝑡 =   𝐸[ 𝑦𝑖𝑡(𝑟) −  𝑦𝑖𝑡(0) ∣∣  𝑑𝑖𝑟 = 1 ], 𝑟 = 𝑞, … , 𝑇;  𝑡 = 𝑟, … , 𝑇. 

Where 𝑦𝑖𝑡(𝑟) is the outcome for child 𝑖 at time 𝑡 given their water supply began 

treatment at time 𝑟, and 𝑟 ≤ 𝑡, and 𝑦𝑖𝑡(0) is the unobserved counterfactual outcome for 

child 𝑖 at time 𝑡 where they have not yet received treatment, 𝑞 is the first period where 

any cohort is treated, and 𝑑𝑖𝑟 is a cohort indicator which equals 1 if individual 𝑖 is in 

treatment group 𝑟. Simply, 𝜏𝑟𝑡 is the average treatment effect on the treated (ATT) for 

that treatment cohort in that year. 

Our second estimand is the average treatment for a specific treatment group, for all the 

years of treatment in our data.  

(2) 𝜏𝑟̅ =   𝐸[𝜏𝑟𝑡] , 𝑟 = 𝑞, … , 𝑇; 𝑡 = 𝑟, … , 𝑇. 

Which we estimate as: 

(3) 𝜏̅̂𝑟 =  
∑ 𝜏̂𝑟𝑡

𝑇
𝑡=𝑟

(𝑇−𝑟+1)
 

Our third estimand, is the overall average for all groups and all years, which we estimate 

with: 

(4) 𝜏̂ =  ∑ 𝜏̂𝑟
𝑇
𝑡=𝑟   × 𝑤𝑟 
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Where 𝑤𝑟 is simply a weight that equals the proportion of treated units that are in group 

𝑟. 

 

4.2 Difference-in-Differences Design Models 

Our main results are from models relying on difference-in-differences designs. In the 

baseline, reduced form model, lead levels, given by the variable 𝐿𝑒𝑎𝑑𝑖𝑡, are assumed to 

affect the birth outcome as shown in (5). The effect of lead is given by T .  

(5) 𝑦𝑖𝑡 =   𝑐𝑗 + 𝑔𝑡 +  𝒙𝒊𝛃 + (T × 𝐿𝑒𝑎𝑑𝑖𝑡) +  𝑢𝑖𝑡  

where 𝑦𝑖𝑗𝑡 is the outcome for individual 𝑖, at time 𝑡. There is a time-invariant postcode-

level effect, 𝑐𝑗 , a time trend in outcome, 𝑔𝑡, and a vector of other variables that affect the 

outcome, 𝒙𝒊, which vary by individual.  The final term 𝑢𝑖𝑡 is the error term.  

This model cannot be estimated for a number of reasons, not least because lead 

exposure of each individual at each time is unknown. Even if known, other variables may 

co-vary with lead and the outcome, leading to biased estimates due to endogeneity. We 

could estimate a two-way fixed effects model using a 𝑝𝑜𝑠𝑡 × 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 indicator but, 

given the staggered timing of the intervention between Glasgow, Edinburgh SW, and 

Edinburgh NE, this could lead to the effect not being identified, due to the “forbidden 

comparisons” problem (Goodman-Bacon, 2021, and Calloway and Sant’Anna, 2021). 

However, given the plausibly exogenous change in lead exposure outlined in section 2, 

we can identify the effect of the lead reduction if we are willing to accept certain 

assumptions. Following Wooldridge (2021), the main parallel trends assumption we 

rely on is a conditional common trends assumption. 

Conditional Common Trends, Staggered Treatment (CCTS) 

Following Athey and Imbens (2022) and Wooldridge (2021), we define the outcome for 

the never-treated group as 𝑦𝑖𝑡(∞). Given this, we formally state the CCTS assumption as: 

(6) 𝐸[ 𝑦𝑖𝑡(∞) − 𝑦𝑖1(∞) ∣∣ 𝑑𝑖𝑟 , 𝒙𝒊𝒋 ] =  𝐸[ 𝑦𝑖𝑡(∞) − 𝑦𝑖1(∞) ∣∣  𝒙𝒊𝒋 ],  

𝑟 = 𝑞, … , 𝑇; 𝑡 = 2, … , 𝑇. 
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The assumption states that for every cohort the trend in outcome if never treated is 

unrelated to being in any treatment cohort, after conditioning on the covariates. This can 

be tested to a degree, see section 5. 

Under-5 mortality is a binary outcome and it is likely the CCTS assumption is violated.  

Therefore we replace this assumption when estimating the effect on under-5 mortality. 

Conditional Parallel Relative Trends, Staggered Treatment (CPRTS) 

(7)   
𝐸[ 𝑦𝑖𝑡(∞)∣∣𝑑𝑖𝑟 , 𝒙𝒊 ] 

𝐸[ 𝑦𝑖1(∞)∣∣𝑑𝑖𝑟 , 𝒙𝒊 ] 
=    

𝐸[ 𝑦𝑖𝑡(∞)∣∣𝒙𝒊 ] 

𝐸[ 𝑦𝑖1(∞)∣∣ 𝒙𝒊 ] 
 , 𝑡 = 2, … , 𝑇, 𝑟 = 𝑞, … , 𝑇 

The ratio of average outcome if never-treated at time t compared to the first period 

average outcome only depends on the covariates. There is no selection into or out of 

treatment.  

4.3 Estimation 

There are now several estimation methods to deal with difference-in-differences when 

there is staggered adoption (see Roth et al., 2023 for a recent review). Following 

Harmon (2023), these can be divided into two groups: “subgroup” types and 

“imputation” types. “Subgroup” types use a particular subset of the data to be a “clean” 

control group for a particular treatment group. For example, all not yet treated units 

before the treatment for a particular cohort starts, or just all never-treated units. 

“Imputation” types instead will impute counterfactuals with either inverse probability 

weighting or regression adjustment. For our main estimates, we use the Wooldridge 

(2021) two-way Mundlak estimation method, which is an “imputation” type. We 

primarily estimate using the Wooldridge (2021) two-way Mundlak because it can 

simultaneously handle a repeated cross-section and the use of a quasi-maximum 

likelihood logistic model that is needed due to the CPRTS assumption. However, as a 

robustness check we also include alternative “subgroup” type estimators in the 

appendix. Note that these alternatives use the CCTS assumption for mortality rather 

than the CPRTS assumption used for the two-way Mundlak and both cannot be true at 

the same time.  

For birthweights we use a linear model and the CCTS assumption and estimate with a 

two-way Mundlak regression with robust errors clustered at postcode sector level 

following Wooldridge (2021). 
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(8) 𝑦𝑖𝑡 = 𝜂 +, 𝒙𝒊𝜿 + ∑ 𝜆𝑟𝑑𝑖𝑟
𝑇
𝑟=𝑞 + ∑ 𝜁𝑟(𝑑𝑖𝑟  ×, 𝒙𝒊)

𝑇
𝑟=𝑞 +  ∑ θs𝑓𝑠𝑡

𝑇
𝑠=2 +

               ∑ (𝑓𝑠𝑡  × 𝒙𝒊)𝝅𝒕
𝑇
𝑠=2 +  ∑ ∑ 𝜏𝑟𝑡(𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡) +𝑇

𝑠=𝑟
𝑇
𝑟=𝑞  

∑ ∑(𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡 × 𝒙̇𝒊𝒓)𝝆𝒓𝒕

𝑇

𝑠=𝑟

𝑇

𝑟=𝑞

+ 𝑢𝑖𝑡 

Where 𝜂 is the intercept and 𝑓𝑠𝑡 are indicators for every time period that equal 1 when 

𝑠 = 𝑡. The 𝑑𝑖𝑟 variable is the cohort indicator as in the CCTS assumption. Next,  𝑝𝑖𝑟𝑡 is a 

post-treatment indicator. It equals 1 for every period after that group first received 

treatment. Formally, 𝑝𝑖𝑟𝑡  = 1 ∀ 𝑡 > 𝑞𝑟 − 1, where 𝑞𝑟 is the period which the group first 

received treatment. For example, given 𝑡 = 1,2,3 and group 1 was first treated in period 

2, then 𝑞1 = 2. If group 2 first received treatment in period 3 then 𝑞2 = 3. Finally, 𝒙̇𝒊𝒓 is 

the deviation from the cohort average for individual i.  

If we wish to allow for more heterogeneity in time trends, we can model the time trend 

as simply 𝑑𝑖𝑟  × 𝑡. This allows for heterogeneity in time trends and also allows us to test 

the common trends assumption with a Wald test jointly on all the coefficients of 𝑑𝑖𝑟  × 𝑡.  

For under-5 mortality, we use the CPRTS assumption and estimate with a quasi-

maximum likelihood logistic two-way Mundlak regression. 

(9) 𝐸[ 𝑦𝑖𝑡 ∣∣  𝑑𝑖𝑟 , 𝒙𝒊 ] = 𝚲 [ 𝜂 +, 𝒙𝒊𝜿 + ∑ 𝜆𝑟𝑑𝑖𝑟
𝑇
𝑟=𝑞 + ∑ 𝜁𝑟(𝑑𝑖𝑟  ×, 𝒙𝒊)

𝑇
𝑟=𝑞 +  ∑ θs𝑓𝑠𝑡

𝑇
𝑠=2 +

 ∑ (𝑓𝑠𝑡  × 𝒙𝒊)𝝅𝒕
𝑇
𝑠=2 + ∑ ∑ 𝜏𝑟𝑡(𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡) +𝑇

𝑠=𝑟
𝑇
𝑟=𝑞  

∑ ∑ (𝑑𝑖𝑟  × 𝑝𝑖𝑟𝑡 × 𝑓𝑠𝑡 × 𝒙̇𝒊𝒓)𝝆𝒓𝒕
𝑇
𝑠=𝑟

𝑇
𝑟=𝑞  ]  

Where 𝚲 represents the logistic function. The treatment effect estimated is an average 

partial effect (APE) of being treated. That is, we estimate the model and then take the 

coefficients applicable for a particular year and cohort. We take the expected value of 

the values with the treatment variable minus the values without including the treatment 

variable. We obtain standard errors for the APE with bootstrapping. 

 

5  Results 
 

We first plot the mean birthweight for Glasgow, Edinburgh and the control group of 

surrounding areas in figure 7. In all groups there is a clear upward trend. The Edinburgh 

average tracks closely with the control group, while the Glasgow average remains below 
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both at all times, and there is no convergence even after the 1978 and 1989 treatment. 

Both the Edinburgh and Glasgow averages are more volatile than the control group. The 

trends appear similar for all groups. There is no clear treatment effect to be seen in the 

raw averages, but this may be due to differences in group characteristics that affect the 

treatment effect. We explore this in section 5.1. 

Similarly, in figure 8 we plot under-5 mortality rates for each group. The trends are 

again similar, but the percentage for Glasgow and Edinburgh is more volatile. No clear 

treatment effect is visible in the raw data, but once again this may be due to 

heterogeneity in group characteristics and therefore selection bias. We move on now to 

the difference-in-differences estimation. 

 

Figure 7 - Average Birthweight by Treatment Cohort, Grams 

 

Notes: Chart shows the mean birthweight in grams of each birth in Edinburgh, Glasgow and the control group.  
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Figure 8 - Under-5 Mortality rate by Treatment Cohort

 

Notes: Chart shows the total Under-5 mortality rates, the probability of all deaths and recorded non-viable 

pregnancies, including stillbirths and spontaneous abortions, for all births in each birth in Edinburgh, Glasgow and the 

control group. 

 

5.1 Two-Way Mundlak Regressions 

Table 2 presents estimates for the effect of the treatment 1 on both birthweights 

(columns 1 and 2), and deaths (columns 3 and 4). Standard errors are clustered by 

postcode sector for the ATTs in columns 1 and 2. For the APEs in Columns 3 and 4 we 

use a bootstrap for the standard errors. In column 1 we see the overall average effect on 

birthweights, without covariates, which has a small negative point estimate. This is the 

opposite sign from what we would expect, but the estimate is not significant at the 5% 

confidence level and is a precise null. The group level estimates are significant, but 

Glasgow has a small negative point estimate, while both the Edinburgh water areas have 

positive estimates. Column 2 includes covariates in the model, as described in section 3. 

The overall estimate is again negative, the opposite sign from expected, while it is 

statistically significant. This is mainly driven by the negative estimate from Glasgow. 

This time the Edinburgh SW estimate is also negative, but not significant, while the 

Edinburgh NE estimate is again positive. Overall, we find no evidence that treatment 1 

increased birthweights. 

In column 3 we show the estimates for the effects on under-5 mortality without 

including covariates. The overall average partial effect is negative, as we would expect, 
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and significant at the 5% confidence level. However, when we add covariates in column 

4 it becomes smaller and not significant. We see a similar pattern for the Glasgow group, 

as this is the main cause of the sign for the overall estimate. The Edinburgh SW estimate 

is positive in column 3, implying the lead reduction increased mortality, but becomes 

negative and not significant in column 4 when we add covariates. The Edinburgh NE 

estimate is negative in both columns but only significant with covariates. Overall, we 

find no strong evidence for a decrease in under-5 mortality due to treatment 1. 

We test the assumptions of common trends and no anticipation by carrying out similar 

regressions but also including a cohort indicator interacted with a continuous time 

variable in the regression, as suggested in Wooldridge (2021). We carry out a Wald test 

of joint null effects on each cohort and time interaction. We reject the hypothesis of no 

anticipation or no common trends if the Wald test fails and finds the coefficients to be 

jointly statistically significant. In the case of the birthweights regression without 

covariates (column 1) the p-value for the test is 0.01, so we reject the hypotheses of no 

anticipation or common trends. However, we do not reject the conditional no 

anticipation and conditional common trends assumptions used in column 2 when we 

include covariates (p-value 0.17).  For columns 3 and 4, the regressions with mortality 

as the dependent variable, we do not reject the hypotheses of no anticipation or 

common trends (p-values 0.72 and 0.26 respectively). 

In table 3, we only examine years for which all of the treatment areas already had 

treatment 1, but not yet treatment 2. Glasgow was treated in 1989, and all Edinburgh 

water areas in 1991. In columns 1 and 2 we see the estimates of the effect on 

birthweight of treatment 2. All point estimates are small and not significant, save the 

Edinburgh estimate in column 2 where we include covariates, but this is negative. 

Overall, we again conclude that the reduction in lead due to the treatment had no effect 

on birthweights. In column 3, we estimate the effect on mortality without covariates. 

The overall estimate is positive, but not significant. The Glasgow estimate is negative 

and not significant, while the Edinburgh effect has the opposite from the expected sign 

and is significant. In column 4, when we include covariates, the overall APE becomes 

negative but remains not significant. The Glasgow estimate remains negative but is 

significant, while the Edinburgh point estimate remains positive but is no longer 



24 
 

significant. Overall, we conclude there is no strong evidence for an effect of treatment 2 

on under-5 mortality. 

 

Table 2 - Effect of treatment 1 by Cohort (Two-Way Mundlak Method) 

Dependent Variable Birthweights Birthweights Under-5 Mortality Under-5 Mortality 

(1) (2) (3) (4) 
    

ATT SE ATT SE APE SE APE SE 

         
Overall -3.5 (1.9) -14.5 (2.5) -0.0017 (0.0008) -0.0017 (0.0012) 
         
Glasgow -9.2 (2.2) -19.2 (3.1) -0.0030 (0.0010) -0.0018 (0.0015) 

         
Edinburgh SW 13.5 (4.8) -4.7 (4.4) 0.0030 (0.0010) -0.0002 (0.0009) 

         
Edinburgh NE 13.7 (5.7) 10.3 (5.9) -0.0001 (0.0013) -0.0040 (0.0014) 

         
         
         
Observations  618,108  612,483  646,893  641,004  
         
Clusters 398  398  398  398  
         
Covariates No  Yes  No  Yes  

         

Notes: Table shows cohort specific treatment effects from lime dosing using two-way Mundlak regressions. We use 

robust standard errors, clustered by postcode sector (columns 1 and 2) or bootstrapped (columns 3 and 4). ATT = 

Average Treatment on the Treated estimate. APE = Average Partial Effect estimate. Birthweights is the birthweight of 

the child in grams. Under-5 Mortality is the probability of all deaths and recorded non-viable pregnancies, including 

stillbirths and spontaneous abortion. Birthweight regression estimates are rounded to 1 decimal place, mortality 

estimates are rounded to 3 decimal places. 
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Table 3 - Effect of Treatment 2 by Cohort (Two-Way Mundlak Method) 

Dependent Variable Birthweights Birthweights Under-5 Mortality Under-5 
Mortality 

(1) (2) (3) (4) 
    

ATT SE ATT SE APE SE APE SE 

         
Overall 1.7 (3.4) -3.3 (3.1) 0.0006 (0.0004) -0.0006 (0.0006) 
         
Glasgow 3.7 (3.1) 2.7 (3.0) -0.0004 (0.0005) -0.0013 (0.0006) 

         
Edinburgh -1.4 (7.2) -12.3 (6.2) 0.0020 (0.0007) 0.0005 (0.0011) 

         
         

         
         
Observations - Overall 362,598  287,326  362,687  359,071  
         
Clusters - Overall 391  391  391  391  
         
Covariates No  Yes  No  Yes  

         

Notes: Table shows cohort specific treatment effects from orthophosphate dosing using two-way Mundlak 

regressions. We use robust standard errors, clustered by postcode sector. ATT = Average Treatment on the Treated 

estimate. APE = Average Partial Effect estimate. Birthweights is the birthweight of the child in grams. Under-5 

Mortality is the probability of all deaths and recorded non-viable pregnancies, including stillbirths and spontaneous 

abortion. Birthweight regression estimates are rounded to 1 decimal place, mortality estimates are rounded to 3 

decimal places. 

 

In figure 9, we show event study estimates of treatment 1 using two-way Mundlak 

regressions for the effect on birthweight. The cohort-year interactions are shown as 

time-to-treatment, so Edinburgh NE, which was treated later, has more pre-treatment 

periods than Glasgow and Edinburgh SW. There does not appear to be any clear pre-

trends before treatment for any cohort, but there is also no clear treatment effect after 

treatment for any cohort. Edinburgh SW estimates are mostly negative while Glasgow 

and Edinburgh NE mostly positive, but all have wide 95% confidence intervals covering 

zero. In figure 10 we show the same event study estimates of the effect on birthweight 

for treatment 2. Both Edinburgh and Glasgow Estimates are typically negative, but again 

very wide intervals covering zero. We see no strong evidence for either pre-trends or a 

treatment effect in these graphs. 

In figure 11 we show event study APE’s for each cohort year for the effect on mortality 

of treatment 1. Again no clear evidence of pre-trends. Glasgow has mostly negative point 

estimates after treatment while Edinburgh SW and Edinburgh NE mostly positive. The 

two Edinburgh water treatment areas have almost all intervals covering zero while 
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Glasgow does have some intervals that are statistically significant. When we look at the 

effect on mortality of treatment 2 in figure 12, we see perhaps some evidence for a 

negative pre-trend in Edinburgh. Point estimates in both Glasgow and Edinburgh tend to 

be negative but all except one post-treatment interval cover zero. Again, we conclude 

there is no strong evidence for an effect on under-5 mortality in these event studies. 

Figure 9 - Effect of Treatment 1 on Birthweights (Event Study with Two-way Mundlak 

Estimator)

 

Notes: Table shows estimated treatment effects on different groups of lead reduction due to lime-dosing in Glasgow 

and Edinburgh compared to a never-treated control group. We use standard errors clustered by postcode sector. In all 

cases the estimates are the average treatment on the treated for that year on that group Birthweights is the 

birthweight in grams for a child. 
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Figure 10 - Effect of Treatment 2 on Birthweights (Event Study with Two-way Mundlak 

Estimator)

 

Notes: Table shows estimated treatment effects on different groups of lead reduction due to orthophosphate in 

Glasgow and Edinburgh compared to a never-treated control group. We use standard errors clustered by postcode 

sector. In all cases the estimates are the average treatment on the treated for that year on that group Birthweights is 

the birthweight in grams for a child. 
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Figure 11 - Effect of Treatment 1 on Under-5 Mortality (Event Study with Two-way 

Mundlak Estimator)

 

Notes: Table shows estimated treatment effects on different groups of lead reduction due to lime-dosing in Glasgow 

and Edinburgh compared to a never-treated control group. We use bootstrapped standard errors. In all cases the 

estimates are the average partial effect for that year on that group. Mortality is the probability of all deaths and 

recorded non-viable pregnancies, including stillbirths and spontaneous abortion for under-5s. 
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Figure 12 - Effect of Treatment 2 on Under-5 Mortality (Event Study with Two-way 

Mundlak Estimator)

 

Notes: Table shows estimated treatment effects on different groups of lead reduction due to orthophosphate in 

Glasgow and Edinburgh compared to a never-treated control group. We use bootstrapped standard errors. In all cases 

the estimates are the average partial effect for that year on that group. Mortality is the probability of all deaths and 

recorded non-viable pregnancies, including stillbirths and spontaneous abortion for under 5s. 

 

5.2 Regression Discontinuity Design 

As an alternative identification strategy, we use a sharp regression discontinuity design 

(RDD). Here we separate the cohorts and regress each individual’s outcome on the date 

of birth with the cut-off being the treatment date. The running variable is the date. We 

use local linear regressions with a triangular kernel. We also use the optimal non-

parametric bandwidth selection method with the robust bias corrected intervals of 

Calonico et al. (2020). This means that, within each cohort, we use a direct before and 

after treatment comparison. We no longer need to rely on the assumptions in section 4. 

Instead, we assume the expected value of the outcome is continuous in the 

neighbourhood of the treatment cut-off for both treated and untreated units. That is, 

mothers cannot perfectly manipulate birth dates so as to be one side of the treatment 

cut-off.  This would be violated if mothers knew about the upcoming water treatment 
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and decided to delay birth until after treatment. Given there is always some randomness 

in birth dates (as many mothers will attest), we believe this is a reasonable assumption. 

See Cattaneo and Titiunik (2022) for a recent review of regression discontinuity design 

and its assumptions.  

Given this assumption holding, we estimate the effect of treatment for individual 

pregnancies near the treatment cut-off. We do not use this as our main estimation 

strategy for two reasons, the actual difference in lead exposure near the cut-off may be 

small. Therefore, the estimate may be too noisy to find an effect. Secondly if the 

assumptions in section 4 hold, the RDD is less efficient because we are discarding so 

much of the variation.  

Table 5 - Local Average Treatment Effect on Birthweights, Regression Discontinuity 

Design Results 

Group Coefficient Std Error Observations Bandwidth 

(days) 

Glasgow, 1 -3.5 (14.5) 216,556 1701 

Edinburgh SW, 1  -10.2 (33.2) 50,291 1488 

Edinburgh NE, 1 -108.0 (46.1) 26,151 1310 

   
  

   
  

Glasgow, 2 8.8 (14.1) 216,556 1416 

Edinburgh, 2 7.2 (28.4) 76,442 1461 

Notes: This table reports the local average treatment effect from separate sharp regression 

discontinuity designs on birthweights in grams. Robust, bias corrected standard errors are 

reported in brackets. Top 3 rows show the effect of treatment 1, lime dosing. Bottom 2 show effect 

of treatment 2, orthophosphate dosing. 
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Table 6 -Local Average Treatment Effect on Under-5 Mortality, Regression Discontinuity 

Design 

Group Coefficient Std Error Observations Bandwidth (days) 

Glasgow, 1 -0.0002 (0.0025) 216,771 1230 

Edinburgh SW, 1 0.0027 (0.0058) 50,326 1303 

Edinburgh NE, 1 -0.0030 (0.0049) 26,172 1781 
   

  
   

  

Glasgow, 2 -0.0019 (0.0024) 216,771 1722 

Edinburgh, 2 -0.0019 (0.0039) 76,498 1757 

Notes: This table reports the local average treatment effect from separate sharp regression 

discontinuity designs on deaths. Robust, bias corrected standard errors are reported in brackets. Top 3 

rows show the effect of treatment 1, lime dosing. Bottom 2 show effect of treatment 2, orthophosphate 

dosing. Mortality is the probability of all for all deaths and recorded non-viable pregnancies, including 

stillbirths and spontaneous abortion. 

 

Table 5 and table 6 shows the results for the various RDD estimations. We use each 

cohort and we show both treatments 1 and 2.W e also examine both outcomes: 

birthweights and deaths. For Glasgow, we see that none of the results are significant at 

the 5% level. For birthweights, both treatment 1 and 2 estimates are small in magnitude, 

and the first is positive, while the latter is negative. For mortality, both treatment 

estimates imply lowered deaths due to treatment, but neither is statistically significant 

at the 5% level. 

For Edinburgh SW and treatment 1, both results are the opposite sign from expected, 

implying treatment lowered birthweights and raised deaths, but neither is statistically 

significant. In Edinburgh NE for treatment 2, the point estimates imply it lowered 

birthweights and lowered deaths. The birthweights estimate is large and statistically 

significant at the 5% level. The mortality estimate is not significant. When we look at 

Edinburgh as a whole for treatment 2, both estimates are of the expected sign. The point 

estimate implies birthweights increased and deaths decreased, but neither is 

statistically significant.  

Overall, the RDD results are consistent with our main results. There is no clear effect on 

birthweights or deaths in either Glasgow or Edinburgh. 
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5.3 Further Robustness Checks 

In the online appendix, we carry out a wide variety of further robustness checks. These 

confirm our main results. These include alternative staggered difference-in-differences 

estimators, comparing high and low lead areas in Glasgow, and alternative two-way 

Mundlak specifications. The results are qualitatively similar in all cases. 

 

6 Discussion and conclusion 
 

We examined the effect of reducing lead pollution in drinking water on health outcomes, 

(birthweights and under-5 mortality) in Glasgow and Edinburgh in the 20th century. We 

use a setting with plausibly exogenous staggered treatment and therefore utilise a 

difference-in-differences design that accounts for the staggered nature of the treatment, 

as well as a regression discontinuity design comparing births just before and just after 

treatment. Across a variety of specifications, and with multiple robustness checks, we 

find no clear evidence of a beneficial effect of lead water pollution reduction on infant 

health outcomes. These findings contribute to the existing literature on the impact of 

lead and birth outcomes, using a much larger sample, and plausibly exogenous variation 

in lead, and high levels of lead. 

It is worth thinking about these results in light of the plausible mechanisms laid out in 

section 2. It may simply be that there is no effect on these outcomes for the level of lead 

in our setting. However, there are also alternative explanations. The first is that an effect 

does exist, but even with our sample size, given the low number of child deaths annually, 

– often less than 1 percent – it may not be sufficient to detect it with precision. Related 

to this is the possibility that there is an effect, but not at the levels of lead in our sample. 

It may be the level of exposure in our sample was simply too low to have a detectable 

average effect. Lead pollution at high levels causes very obvious and extreme health 

problems, but at lower levels it is much harder to see acute lead poisoning symptoms. 

However, the water and blood lead levels in our sample, especially for Glasgow, are 

much larger than in other studies which do find an effect.  

A second possibility is that the literature on lead and child mortality may be affected by 

publication bias. The lead-crime literature does suffer from publication bias (Higney et 
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al., 2022). It can be the case that even if every paper estimated an unbiased causal effect, 

in the presence of publication bias we would still be left with a bias in the literature. It is 

beyond the scope of this paper to estimate if there is publication bias for the lead 

pollution and birth outcomes literature, but it is a problem across empirical science and 

cannot be ruled out here. 

Thirdly, it is possible that lead exposure would typically have an effect on child 

mortality, but a mediating factor can reduce its impact. In the recent review of Clay et al. 

(2024) shows most quasi-experimental studies find an effect. However, all the quasi-

experimental studies which find an effect are from North America, while our paper and 

Grönqvist et al. (2020) do not find an effect and are from Northern Europe. One 

potential difference is nutrition, specifically high milk intake.  The UK and Northern 

Europe has some of the highest milk consumption rates in the world (FAO, 2022), more 

than two and a half times the global average (FAO, 2022). In the 1930s, the National Milk 

Scheme in Scotland promoted milk consumption and provided targeted subsidies for 

mothers of children under five years old. This, along with the provision of free milk in 

schools for much of the 20th century (Krebs, 2019), led to a significant increase in milk 

consumption. Studies have shown that high milk intake is associated with lower blood 

lead levels (Chuang et al., 2004). Thus, it is possible that better nutrition, particularly 

high milk consumption, may have played a role in reducing the impact of lead on under-

5 mortality in Northern Europe compared to elsewhere.   

Our study has several limitations. Firstly, the treatment variation is at a postcode sector 

level rather than an individual level and we observe most of our sample only once. This 

means that our confidence intervals are less precise than if the treatment was 

exogenously applied at an individual level. However, this is common in the literature 

that examines the effect of lead with quasi-experiments, because lead cannot be ethically 

given as part of a randomised control trial. We therefore must rely on coarser treatment 

variation. Secondly, our estimates of the average treatment on the treated imply that the 

effects we observe may only apply to larger urban areas. Perhaps there is something 

systematically different about rural areas that would lead to a stronger effect. For 

example, Parker and Wilby (2013) find that domestic water use per capita is much 

higher in rural areas compared to urban areas.  
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Failure to find a robust effect on infant outcomes in this data set does not mean lead 

remediation is pointless. Lead has been shown to affect a large variety of outcomes. Our 

findings do, however, have implications for the policy importance attached to lead 

remediation compared to other actions directed at infant health, such as improved 

nutrition or better neonatal healthcare. If such “low-hanging fruit” policies are still to be 

implemented, and resources are constrained, then it may be better to focus on those 

before lead remediation is undertaken.  
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